Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 159(4): 884-95, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25417163

RESUMO

Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here, we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed normally at 2-cell mouse embryos generated by in vitro fertilization (IVF) but not SCNT. RRRs are enriched for H3K9me3 in donor somatic cells and its removal by ectopically expressed H3K9me3 demethylase Kdm4d not only reactivates the majority of RRRs, but also greatly improves SCNT efficiency. Furthermore, use of donor somatic nuclei depleted of H3K9 methyltransferases markedly improves SCNT efficiency. Our study thus identifies H3K9me3 as a critical epigenetic barrier in SCNT-mediated reprogramming and provides a promising approach for improving mammalian cloning efficiency.


Assuntos
Desenvolvimento Embrionário , Código das Histonas , Histonas/metabolismo , Técnicas de Transferência Nuclear , Animais , Clonagem de Organismos/métodos , Embrião de Mamíferos/metabolismo , Feminino , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Metilação , Metiltransferases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteínas Repressoras/metabolismo , Zigoto
2.
Nature ; 499(7456): 88-91, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23728301

RESUMO

The generation of induced pluripotent stem (iPS) cells presents a challenge to normal developmental processes. The low efficiency and heterogeneity of most methods have hindered understanding of the precise molecular mechanisms promoting, and roadblocks preventing, efficient reprogramming. Although several intermediate populations have been described, it has proved difficult to characterize the rare, asynchronous transition from these intermediate stages to iPS cells. The rapid expansion of minor reprogrammed cells in the heterogeneous population can also obscure investigation of relevant transition processes. Understanding the biological mechanisms essential for successful iPS cell generation requires both accurate capture of cells undergoing the reprogramming process and identification of the associated global gene expression changes. Here we demonstrate that in mouse embryonic fibroblasts, reprogramming follows an orderly sequence of stage transitions, marked by changes in the cell-surface markers CD44 and ICAM1, and a Nanog-enhanced green fluorescent protein (Nanog-eGFP) reporter. RNA-sequencing analysis of these populations demonstrates two waves of pluripotency gene upregulation, and unexpectedly, transient upregulation of several epidermis-related genes, demonstrating that reprogramming is not simply the reversal of the normal developmental processes. This novel high-resolution analysis enables the construction of a detailed reprogramming route map, and the improved understanding of the reprogramming process will lead to new reprogramming strategies.


Assuntos
Reprogramação Celular/fisiologia , Receptores de Hialuronatos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Reprogramação Celular/genética , Epiderme/metabolismo , Fibroblastos , Citometria de Fluxo , Perfilação da Expressão Gênica , Genes Reporter , Receptores de Hialuronatos/genética , Molécula 1 de Adesão Intercelular/genética , Camundongos , Análise de Sequência de RNA , Análise de Célula Única , Regulação para Cima/genética
3.
Cell Stem Cell ; 30(11): 1538-1548.e4, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37922880

RESUMO

Immune rejection of allogeneic cell therapeutics remains a major problem for immuno-oncology and regenerative medicine. Allogeneic cell products so far have inferior persistence and efficacy when compared with autologous alternatives. Engineering of hypoimmune cells may greatly improve their therapeutic benefit. We present a new class of agonistic immune checkpoint engagers that protect human leukocyte antigen (HLA)-depleted induced pluripotent stem cell-derived endothelial cells (iECs) from innate immune cells. Engagers with agonistic functionality to their inhibitory receptors TIM3 and SIRPα effectively protect engineered iECs from natural killer (NK) cell and macrophage killing. The SIRPα engager can be combined with truncated CD64 to generate fully immune evasive iECs capable of escaping allogeneic cellular and immunoglobulin G (IgG) antibody-mediated rejection. Synthetic immune checkpoint engagers have high target specificity and lack retrograde signaling in the engineered cells. This modular design allows for the exploitation of more inhibitory immune pathways for immune evasion and could contribute to the advancement of allogeneic cell therapeutics.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Endoteliais/metabolismo , Antígenos HLA , Células Matadoras Naturais , Imunidade Inata
4.
Nat Commun ; 12(1): 7101, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880218

RESUMO

Genome editing therapy for Duchenne muscular dystrophy (DMD) holds great promise, however, one major obstacle is delivery of the CRISPR-Cas9/sgRNA system to skeletal muscle tissues. In general, AAV vectors are used for in vivo delivery, but AAV injections cannot be repeated because of neutralization antibodies. Here we report a chemically defined lipid nanoparticle (LNP) system which is able to deliver Cas9 mRNA and sgRNA into skeletal muscle by repeated intramuscular injections. Although the expressions of Cas9 protein and sgRNA were transient, our LNP system could induce stable genomic exon skipping and restore dystrophin protein in a DMD mouse model that harbors a humanized exon sequence. Furthermore, administration of our LNP via limb perfusion method enables to target multiple muscle groups. The repeated administration and low immunogenicity of our LNP system are promising features for a delivery vehicle of CRISPR-Cas9 to treat skeletal muscle disorders.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Músculo Esquelético/metabolismo , RNA Mensageiro , Animais , Proteína 9 Associada à CRISPR , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Éxons , Terapia Genética , Humanos , Lipossomos , Camundongos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Nanopartículas , Doenças Neuromusculares/genética , Doenças Neuromusculares/terapia
5.
Nat Commun ; 11(1): 1334, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170079

RESUMO

Prolonged expression of the CRISPR-Cas9 nuclease and gRNA from viral vectors may cause off-target mutagenesis and immunogenicity. Thus, a transient delivery system is needed for therapeutic genome editing applications. Here, we develop an extracellular nanovesicle-based ribonucleoprotein delivery system named NanoMEDIC by utilizing two distinct homing mechanisms. Chemical induced dimerization recruits Cas9 protein into extracellular nanovesicles, and then a viral RNA packaging signal and two self-cleaving riboswitches tether and release sgRNA into nanovesicles. We demonstrate efficient genome editing in various hard-to-transfect cell types, including human induced pluripotent stem (iPS) cells, neurons, and myoblasts. NanoMEDIC also achieves over 90% exon skipping efficiencies in skeletal muscle cells derived from Duchenne muscular dystrophy (DMD) patient iPS cells. Finally, single intramuscular injection of NanoMEDIC induces permanent genomic exon skipping in a luciferase reporter mouse and in mdx mice, indicating its utility for in vivo genome editing therapy of DMD and beyond.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Éxons/genética , Vesículas Extracelulares/metabolismo , Nanopartículas/química , RNA Guia de Cinetoplastídeos/metabolismo , Sequência de Bases , Sobrevivência Celular , Dimerização , Edição de Genes , Vetores Genéticos/metabolismo , Células HEK293 , Protease de HIV/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ligantes , Luciferases/metabolismo , Splicing de RNA/genética , RNA Catalítico/metabolismo , Ribonucleoproteínas/metabolismo , Doadores de Tecidos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
6.
Methods Mol Biol ; 1828: 191-217, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30171543

RESUMO

Duchenne muscular dystrophy (DMD) is a congenital X-linked disease caused by mutations in the gene encoding the dystrophin protein, which is required for myofiber integrity. Exon skipping therapy is an emerging strategy for restoring the open reading frame of the dystrophin gene to produce functional protein in DMD patients by skipping single or multiple exons. Although antisense oligonucleotides are able to target pre-mRNA for exon skipping, their half-lives are short and any therapeutic benefit is transient. In contrast, genome editing by DNA nucleases, such as the CRISPR-Cas9 system, could offer permanent correction by targeting genomic DNA. Our laboratory previously reported that disrupting the splicing acceptor site in exon 45 by plasmid delivery of the CRISPR-Cas9 system in iPS cells, derived from a DMD patient lacking exon 44, successfully restored dystrophin protein expression in differentiated myoblasts. Herein, we describe an optimized methodology to prepare myoblasts differentiated from iPS cells by mRNA transfection of the CRISPR-Cas9 system to skip exon 45 in myoblasts, and evaluate the restored dystrophin by RT-PCR and Western blotting.


Assuntos
Sistemas CRISPR-Cas , Distrofina/genética , Éxons , Edição de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Distrofia Muscular de Duchenne/genética , Mioblastos/metabolismo , Processamento Alternativo , Técnicas de Cultura de Células , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Células Cultivadas , Biologia Computacional/métodos , Distrofina/metabolismo , Regulação da Expressão Gênica , Humanos , Mitomicina/farmacologia , Desenvolvimento Muscular , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Mutação , Proteína MyoD/genética , Mioblastos/citologia , RNA Guia de Cinetoplastídeos , RNA Mensageiro/genética , Transdução Genética
7.
Cell Stem Cell ; 23(3): 343-354.e5, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30033120

RESUMO

Animal cloning can be achieved through somatic cell nuclear transfer (SCNT), although the live birth rate is relatively low. Recent studies have identified H3K9me3 in donor cells and abnormal Xist activation as epigenetic barriers that impede SCNT. Here we overcome these barriers using a combination of Xist knockout donor cells and overexpression of Kdm4 to achieve more than 20% efficiency of mouse SCNT. However, post-implantation defects and abnormal placentas were still observed, indicating that additional epigenetic barriers impede SCNT cloning. Comparative DNA methylome analysis of IVF and SCNT blastocysts identified abnormally methylated regions in SCNT embryos despite successful global reprogramming of the methylome. Strikingly, allelic transcriptomic and ChIP-seq analyses of pre-implantation SCNT embryos revealed complete loss of H3K27me3 imprinting, which may account for the postnatal developmental defects observed in SCNT embryos. Together, these results provide an efficient method for mouse cloning while paving the way for further improving SCNT efficiency.


Assuntos
Implantação do Embrião/genética , Embrião de Mamíferos/metabolismo , Impressão Genômica , Histonas/metabolismo , Técnicas de Transferência Nuclear , Animais , Embrião de Mamíferos/embriologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout
8.
PLoS One ; 6(5): e20461, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21637830

RESUMO

The principal factors that lead to proliferation and pluripotency in embryonic stem cells (ESCs) have been vigorously investigated. However, the global network of factors and their full signaling cascade is still unclear. In this study, we found that ECAT11 (L1td1) is one of the ESC-associated transcripts harboring a truncated fragment of ORF-1, a component of the L1 retrotransposable element. We generated an ECAT11 knock-in mouse by replacing its coding region with green fluorescent protein. In the early stage of development, the fluorescence was observed at the inner cell mass of blastocysts and epiblasts. Despite this specific expression, ECAT11-null mice grow normally and are fertile. In addition, ECAT11 was dispensable for both the proliferation and pluripotency of ESCs.We found rapid and robust activation of ECAT11 in fibroblasts after the forced expression of transcription factors that can give rise pluripotency in somatic cells. However, iPS cells could be established from ECAT11-null fibroblasts. Our data demonstrate the dispensability of ECAT11/L1td1 in pluripotency, despite its specific expression.


Assuntos
Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Transporte Proteico , Proteínas/química , Proteínas/genética , Proteínas de Ligação a RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA