Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10558, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724590

RESUMO

Recent studies have observed high methane concentrations in runoff water and the ambient air at various glacier sites, including the Greenland Ice Sheet, the glacier forefield in Svalbard, and the ice cap in Iceland. This study extends these findings to smaller mountain glaciers in Alaska. Methane and carbon dioxide concentrations in the ambient air near the meltwater outlet, fluxes of these gases at the surface of runoff water and riverbank sediments, and dissolved methane content in the runoff water were measured at four glaciers. Three of the four glaciers showed conspicuous signals of methane emissions from runoff water, with the Castner Glacier terminus exhibiting a methane concentration three times higher than background levels, along with elevated dissolved methane levels in the runoff water. This study marks the detection of significant methane emissions from small mountain glacier runoff, contributing to the understanding that mountain glaciers also release methane into the atmosphere.

2.
Front Microbiol ; 14: 1206641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564288

RESUMO

Cryopeg brines are isolated volumes of hypersaline water in subzero permafrost. The cryopeg system at Utqiagvik, Alaska, is estimated to date back to 40 ka BP or earlier, a remnant of a late Pleistocene Ocean. Surprisingly, the cryopeg brines contain high concentrations of organic carbon, including extracellular polysaccharides, and high densities of bacteria. How can these physiologically extreme, old, and geologically isolated systems support such an ecosystem? This study addresses this question by examining the energetics of the Utqiagvik cryopeg brine ecosystem. Using literature-derived assumptions and new measurements on archived borehole materials, we first estimated the quantity of organic carbon when the system formed. We then considered two bacterial growth trajectories to calculate the lower and upper bounds of the cell-specific metabolic rate of these communities. These bounds represent the first community estimates of metabolic rate in a subzero hypersaline environment. To assess the plausibility of the different growth trajectories, we developed a model of the organic carbon cycle and applied it to three borehole scenarios. We also used dissolved inorganic carbon and nitrogen measurements to independently estimate the metabolic rate. The model reconstructs the growth trajectory of the microbial community and predicts the present-day cell density and organic carbon content. Model input included measured rates of the in-situ enzymatic conversion of particulate to dissolved organic carbon under subzero brine conditions. A sensitivity analysis of model parameters was performed, revealing an interplay between growth rate, cell-specific metabolic rate, and extracellular enzyme activity. This approach allowed us to identify plausible growth trajectories consistent with the observed bacterial densities in the cryopeg brines. We found that the cell-specific metabolic rate in this system is relatively high compared to marine sediments. We attribute this finding to the need to invest energy in the production of extracellular enzymes, for generating bioavailable carbon from particulate organic carbon, and the production of extracellular polysaccharides for cryoprotection and osmoprotection. These results may be relevant to other isolated systems in the polar regions of Earth and to possible ice-bound brines on worlds such as Europa, Enceladus, and Mars.

3.
Front Microbiol ; 14: 1355342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38268704

RESUMO

[This corrects the article DOI: 10.3389/fmicb.2023.1206641.].

4.
Sci Rep ; 11(1): 15518, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330943

RESUMO

Permafrost is known to occur in high mountainous areas such as the Daisetsu Mountains in Japan, which are located at the southernmost limit of the permafrost distribution in the world. In this study, areas with climatic conditions suitable for sustaining permafrost in the Daisetsu Mountains are projected using bias-corrected and downscaled climate model outputs and statistical relationships between surface air temperatures and permafrost areas. Using freezing and thawing indices, the size of the area in the Daisetsu Mountains where climatic conditions were suitable for permafrost were estimated to be approximately 150 km2 in 2010. Under the RCP8.5 scenario, this area is projected to decrease to about 30 km2 by 2050 and it is projected to disappear by around 2070. Under the RCP2.6 scenario, the area is projected to decrease to approximately 20 km2 by 2100. The degradation of mountain permafrost could potentially affect the stability of trekking trails due to slope displacement, and it may also have deleterious effects on current alpine ecosystems. It is therefore important to accurately monitor changes in the mountain ecosystem environment and to implement measures to adapt to an environment that is projected to change significantly in the future.

5.
Prog Earth Planet Sci ; 7(1): 56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088673

RESUMO

The Yedoma layer, a permafrost layer containing a massive amount of underground ice in the Arctic regions, is reported to be rapidly thawing. In this study, we develop the Permafrost Degradation and Greenhouse gasses Emission Model (PDGEM), which describes the thawing of the Arctic permafrost including the Yedoma layer due to climate change and the greenhouse gas (GHG) emissions. The PDGEM includes the processes by which high-concentration GHGs (CO2 and CH4) contained in the pores of the Yedoma layer are released directly by dynamic degradation, as well as the processes by which GHGs are released by the decomposition of organic matter in the Yedoma layer and other permafrost. Our model simulations show that the total GHG emissions from permafrost degradation in the RCP8.5 scenario was estimated to be 31-63 PgC for CO2 and 1261-2821 TgCH4 for CH4 (68th percentile of the perturbed model simulations, corresponding to a global average surface air temperature change of 0.05-0.11 °C), and 14-28 PgC for CO2 and 618-1341 TgCH4 for CH4 (0.03-0.07 °C) in the RCP2.6 scenario. GHG emissions resulting from the dynamic degradation of the Yedoma layer were estimated to be less than 1% of the total emissions from the permafrost in both scenarios, possibly because of the small area ratio of the Yedoma layer. An advantage of PDGEM is that geographical distributions of GHG emissions can be estimated by combining a state-of-the-art land surface model featuring detailed physical processes with a GHG release model using a simple scheme, enabling us to consider a broad range of uncertainty regarding model parameters. In regions with large GHG emissions due to permafrost thawing, it may be possible to help reduce GHG emissions by taking measures such as restraining land development.

6.
Prog Earth Planet Sci ; 7(1): 69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33214995

RESUMO

To date, the treatment of permafrost in global climate models has been simplified due to the prevailing uncertainties in the processes involving frozen ground. In this study, we improved the modeling of permafrost processes in a state-of-the-art climate model by taking into account some of the relevant physical properties of soil such as changes in the thermophysical properties due to soil freezing. As a result, the improved version of the global land surface model was able to reproduce a more realistic permafrost distribution at the southern limit of the permafrost area by increasing the freezing of soil moisture in winter. The improved modeling of permafrost processes also had a significant effect on future projections. Using the conventional formulation, the predicted cumulative reduction of the permafrost area by year 2100 was approximately 60% (40-80% range of uncertainty from a multi-model ensemble) in the RCP8.5 scenario, while with the improved formulation, the reduction was approximately 35% (20-50%). Our results indicate that the improved treatment of permafrost processes in global climate models is important to ensuring more reliable future projections.

7.
FEMS Microbiol Ecol ; 95(12)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626297

RESUMO

Hypersaline aqueous environments at subzero temperatures are known to be inhabited by microorganisms, yet information on community structure in subzero brines is very limited. Near Utqiagvik, Alaska, we sampled subzero brines (-6°C, 115-140 ppt) from cryopegs, i.e. unfrozen sediments within permafrost that contain relic (late Pleistocene) seawater brine, as well as nearby sea-ice brines to examine microbial community composition and diversity using 16S rRNA gene amplicon sequencing. We also quantified the communities microscopically and assessed environmental parameters as possible determinants of community structure. The cryopeg brines harbored surprisingly dense bacterial communities (up to 108 cells mL-1) and millimolar levels of dissolved and particulate organic matter, extracellular polysaccharides and ammonia. Community composition and diversity differed between the two brine environments by alpha- and beta-diversity indices, with cryopeg brine communities appearing less diverse and dominated by one strain of the genus Marinobacter, also detected in other cold, hypersaline environments, including sea ice. The higher density and trend toward lower diversity in the cryopeg communities suggest that long-term stability and other features of a subzero brine are more important selective forces than in situ temperature or salinity, even when the latter are extreme.


Assuntos
Bactérias/classificação , Camada de Gelo/microbiologia , Pergelissolo/microbiologia , Água do Mar/microbiologia , Alaska , Regiões Árticas , Bactérias/genética , Bactérias/isolamento & purificação , Temperatura Baixa , Microbiota , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Sais , Temperatura
8.
Ecol Evol ; 6(16): 5690-704, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27547347

RESUMO

The larch (Larix spp.) forest in eastern Siberia is the world's largest coniferous forest. Its persistence is considered to depend on near-surface permafrost, and thus, forecast warming over the 21st century and consequent degradation of near-surface permafrost is expected to affect the larch forest in Siberia. However, predictions of these effects vary greatly, and many uncertainties remain about land - atmosphere interactions within the ecosystem. We developed an integrated land surface model to analyze how the Siberian larch forest will react to current warming trends. This model analyzed interactions between vegetation dynamics and thermo-hydrology, although it does not consider many processes those are considered to affect productivity response to a changing climate (e.g., nitrogen limitation, waterlogged soil, heat stress, and change in species composition). The model showed that, under climatic conditions predicted under gradual and rapid warming, the annual net primary production of larch increased about 2 and 3 times, respectively, by the end of the 21st century compared with that in the previous century. Soil water content during the larch-growing season showed no obvious trend, even when surface permafrost was allowed to decay and result in subsurface runoff. A sensitivity test showed that the forecast temperature and precipitation trends extended larch leafing days and reduced water shortages during the growing season, thereby increasing productivity. The integrated model also satisfactorily reconstructed latitudinal gradients in permafrost presence, soil moisture, tree leaf area index, and biomass over the entire larch-dominated area in eastern Siberia. Projected changes to ecosystem hydrology and larch productivity at this geographical scale were consistent with those from site-level simulation. This study reduces the uncertainty surrounding the impact of current climate trends on this globally important carbon reservoir, and it demonstrates the need to consider complex ecological processes to make accurate predictions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA