Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Pharmacol ; 102(4): 183-195, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36122913

RESUMO

The human calcium-sensing receptor (CaSR) is a G protein-coupled receptor that maintains extracellular Ca2+ homeostasis by regulating the secretion of parathyroid hormone. Upacicalcet is a novel positive allosteric modulator of CaSR that is used for the treatment of secondary hyperparathyroidism. In the present study, to clarify the binding site of upacicalcet to CaSR, we conducted binding studies and agonistic activity studies in HEK-293T cells expressing human CaSR (intact and mutant) and an in silico docking-simulation analysis. As a result, upacicalcet competed with L-tryptophan and was thought to affect the amino acid binding site. In addition, the effects of substitutions at the amino acid binding site on the binding abilities to upacicalcet as well as the effects on receptor function as measured using inositol-1 monophosphate accumulation were examined. Upacicalcet interacted with several CaSR residues that constitute the amino acid binding site. Based on these results, we performed an in silico analysis and obtained a binding mode, consistent with the in vitro study results. Our study revealed that upacicalcet is a novel secondary hyperparathyroidism drug that targets the amino acid binding site of CaSR. Upacicalcet is expected to become a new treatment option for secondary hyperparathyroidism because the binding site differs from that of conventional drugs; consequently, it may be effective for patients who are not sensitive to conventional drugs, and it may have a superior safety profile. SIGNIFICANCE STATEMENT: Upacicalcet interacts with several residues that constitute the amino acid binding site of the calcium-sensing receptor (CaSR) and shows a potent positive allosteric activity. This mechanism differs from those of conventional drugs. Therefore, upacicalcet can be regarded as a novel secondary hyperparathyroidism drug that acts on the amino acid binding site of CaSR.


Assuntos
Hiperparatireoidismo Secundário , Propionatos , Receptores de Detecção de Cálcio , Sítios de Ligação , Humanos , Hiperparatireoidismo Secundário/tratamento farmacológico , Hiperparatireoidismo Secundário/etiologia , Inositol/uso terapêutico , Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/uso terapêutico , Propionatos/farmacologia , Receptores de Detecção de Cálcio/metabolismo , Triptofano
2.
J Artif Organs ; 23(4): 358-364, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32656667

RESUMO

The cultivation of cells on microcarriers (MCs) in stirred suspension system is useful method for the large-scale culture of human mesenchymal stem cells (hMSCs) for allogenic transplantation. To harvest hMSCs from MCs without using proteolytic enzyme treatment but by lowering temperature, polystyrene MCs coated with a copolymer called CAT having zwitterionic and thermoresponsive characteristics, which has a lower critical solution temperature (LCST) in the range of 28-32 â„ƒ, were developed and compared with those coated with poly(N-isopropylacrylamide) (PNIPAM), which has an LCST almost the same as that of the CAT copolymer. A preliminary study using polystyrene dishes coated with the CAT copolymer at various densities showed superior adhesion efficiency and cell growth compared with those coated with PNIPAM; however, the rate of cell recovery by lowering the temperature to 24 â„ƒ was only about 80% in both cases. Although cells grew on polystyrene MCs coated with PNIPAM (0.64-16 µg/cm2) and on those coated with CAT (0.0050-1.0 µg/cm2), the cell recovery rate at 24 â„ƒ was lower than 20%. The decrease in recovery temperature from 24 to 4 â„ƒ resulted in about 50% cell recovery from CAT-coated (0.010-0.10 µg/cm2) MC, whereas the rate of cell recovery from PNIPAM-coated MC remained at about 20%. CAT (0.20 µg/cm2) coating after treatment of polystyrene MCs with oxygen plasma discharge increased the cell recovery rate to 72% at 4 â„ƒ. Consequently, the combination of oxygen plasma discharge treatment and CAT coating of polystyrene MCs might provide not only adhesion efficiency and growth of MSCs comparable to those on polystyrene MCs without any treatment but also a high cell recover rate of more than 70%.


Assuntos
Técnicas de Cultura de Células , Proliferação de Células/fisiologia , Células-Tronco Mesenquimais/citologia , Resinas Acrílicas , Humanos , Polímeros , Temperatura
3.
Surg Today ; 49(11): 958-964, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31098758

RESUMO

PURPOSE: Although various artificial tracheas have been developed, none have proven satisfactory for clinical use. In-body tissue architecture (IBTA) has enabled us to produce collagenous tissues with a wide range of shapes and sizes to meet the needs of individual recipients. In the present study, we investigated the long-term outcomes of patch tracheoplasty using an IBTA-induced collagenous tissue membrane ("biosheet") in a beagle model. METHODS: Nine adult female beagles were used. Biosheets were prepared by embedding cylindrical molds assembled with a silicone rod and a slitting pipe into dorsal subcutaneous pouches for 2 months. The sheets were then implanted by patch tracheoplasty. An endoscopic evaluation was performed after 1, 3, or 12 months. The implanted biosheets were harvested for a histological evaluation at the same time points. RESULTS: All animals survived the study. At 1 month after tracheoplasty, the anastomotic parts and internal surface of the biosheets were smooth with ciliated columnar epithelium, which regenerated into the internal surface of the biosheet. The chronological spread of chondrocytes into the biosheet was observed at 3 and 12 months. CONCLUSIONS: Biosheets showed excellent performance as a scaffold for trachea regeneration with complete luminal epithelium and partial chondrocytes in a 1-year beagle implantation model of patch tracheoplasty.


Assuntos
Materiais Biocompatíveis , Membranas Artificiais , Procedimentos de Cirurgia Plástica/métodos , Engenharia Tecidual , Traqueia/cirurgia , Estenose Traqueal/cirurgia , Animais , Modelos Animais de Doenças , Cães , Feminino , Fatores de Tempo , Resultado do Tratamento
4.
Eur J Vasc Endovasc Surg ; 55(6): 882-887, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29661648

RESUMO

OBJECTIVE: The world's smallest calibre "microbiotube" vascular graft was recently developed, with an inner diameter of 0.6 mm. It was formed using in-body tissue architecture (iBTA) and has a high degree of patency and capacity for regeneration in the acute phase, 1 month after implantation. This consecutive study investigated the compatibility and stability of microbiotubes in the chronic phase of implantation for 12 months for potential application in microsurgery. METHODS: This was an in vivo experimental study. The microbiotubes were prepared by embedding the mould subcutaneously in rats for 2 months. Allogenic microbiotubes (n = 16) were implanted into the bilateral femoral arteries (inner diameter 0.5 mm) of eight Wistar rats in an end to end anastomosis manner for 12 months. Follow up 7-Tesla magnetic resonance angiograms were performed every 3 months. Histological observation was performed 12 months after implantation. RESULTS: All patent grafts (n = 12, patency 75%) one month after implantation maintained their patency up to 12 months without any abnormal morphological changes or calcification. Histological observation at 12 months showed that layered α-smooth muscle actin positive cells with a monolayer luminal covering of endothelial cells had formed from the proximal to the distal anastomoses. A thin elastic fibre layer formed in the luminal area. After implantation, all components of the microbiotube were similar to those of a native artery. CONCLUSIONS: This study suggests that microbiotubes have high compatibility, stability, and durability as replacement grafts over the short to mid-term period.


Assuntos
Prótese Vascular , Engenharia Tecidual , Animais , Materiais Biocompatíveis/farmacologia , Implante de Prótese Vascular/métodos , Artéria Femoral/fisiologia , Artéria Femoral/cirurgia , Sobrevivência de Enxerto , Angiografia por Ressonância Magnética , Masculino , Microcirurgia/métodos , Microvasos/fisiologia , Microvasos/cirurgia , Desenho de Prótese , Ratos Wistar , Transplante Autólogo , Grau de Desobstrução Vascular/fisiologia
5.
J Artif Organs ; 18(4): 322-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26130007

RESUMO

Biotubes, prepared using in-body tissue architecture (IBTA) technology, have adequate mechanical properties and excellent biocompatibility for vascular grafts. However, they have thin walls, lack vascular constructing cells, and are composed of subcutaneous connective tissues consisting mainly of collagen and fibroblasts. This study aimed to prepare Biotubes with a vascular-like structure including an endothelial cell lining and a smooth muscle cell by IBTA using adipose-derived vascular stromal cell (ADSCs)-exuding specially designed multiporous tubes (outer diameter 5 mm, length 24 mm, pore size 500 µm, pore number 180, cell number/tube >3.0 × 10(6)). ADSCs were separated from rat subcutaneous fat, suspended in a Matrigel™ solution at 4 °C, and then filled into the tubes. After the tubes were embedded into dorsal subcutaneous pouches of the same rats for 2 weeks, robust Biotubes with a wall thickness of >600 µm were formed surrounding the tubes. The luminal layer of the obtained Biotubes was dominated by the cells positive for an endothelial marker. Almost the entire intima, with a thickness of about 400 µm, was occupied with cells positive for a smooth muscle marker. Both cells were derived from ADSCs. Biotube walls were constructed by fusing ADSC-derived vascular constructing cells exuded from the tubes and fibroblasts and collagen from the surrounding connective tissue. A robust Biotubes with vascular cells component, were formed after only 2 weeks of subcutaneous incubation of ADSCs-exuding multiporous tubes.


Assuntos
Bioprótese , Prótese Vascular , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Tecido Adiposo/citologia , Animais , Endotélio Vascular , Ratos , Ratos Endogâmicos Lew , Ratos Wistar , Células Estromais , Enxerto Vascular
6.
J Artif Organs ; 18(1): 48-54, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25320016

RESUMO

The use of stent grafts for endovascular aortic repair has become an important treatment option for aortic aneurysms requiring surgery. This treatment has achieved excellent outcomes; however, problems like type 1 endoleaks and stent graft migration remain. Bio stent grafts (BSGs), which are self-expanding stents covered with connective tissue, were previously developed using "in-body tissue architecture" technology. We assessed their early adaptation to the aorta after transcatheter implantation in a beagle model. BSGs were prepared by subcutaneous embedding of acryl rods mounted with self-expanding nitinol stents in three beagles for 4 weeks (n = 3/dog). The BSGs were implanted as allografts into infrarenal abdominal aortas via the femoral artery of three other beagles. After 1 month of implantation, aortography revealed no stenosis or aneurysmal changes. The luminal surface of the BSGs was completely covered with neointimal tissue, including endothelialization, without any thrombus formation. The cover tissue could fuse the luminal surface of the native aorta with tight conjunctions even at both ends of the stents, resulting in complete impregnation of the strut into the reconstructed vascular wall, which is expected to prevent endoleaks and migration in clinical applications.


Assuntos
Aorta Abdominal/cirurgia , Implante de Prótese Vascular/métodos , Prótese Vascular , Stents , Engenharia Tecidual , Animais , Cães
7.
Bioengineering (Basel) ; 11(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38927821

RESUMO

Securing high-quality cell sources is important in regenerative medicine. In this study, we developed a device that can accumulate autologous stem cells in the body. When small wire-assembled molds were embedded in the dorsal subcutaneous pouches of beagles for several weeks, collagen-based tissues with minimal inflammation formed inside the molds. At 3 weeks of embedding, the outer areas of the tissues were composed of immature type III collagen with large amounts of cells expressing SSEA3 or SSEA4 markers, in addition to growth factors such as HGF or VEGF. When separated from the tissues by collagenase treatment, approximately four million cells with a proportion of 70% CD90-positive and 20% SSEA3- or SSEA4-positive cells were recovered from the single mold. The cells could differentiate into bone or cartilage cells. The obtained cell-containing tissues are expected to have potential as therapeutic materials or cell sources in regenerative medicine.

8.
Bioengineering (Basel) ; 11(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38534518

RESUMO

The treatment of long-tracheal lesion is difficult because there are currently no viable grafts for tracheal replacement. To solve this problem, we have developed an autologous Tissue-Engineered Trachea (aTET), which is made up of collagenous tissues and cartilage-like structures derived from rat chondrocytes. This graft induced successful long-term survival in a small-animal experiment in our previous study. In this study, we investigated the regeneration process of an aTET to attain reproducible success. We prepared an aTET by using a specially designed mold and performed patch tracheoplasty with an aTET. We assigned twenty-seven rats to three groups according to the three types of patch grafts used: aTET patches (the aTET group), fresh tracheal autograft patches (the Ag group), or polylactic acid and polycaprolactone copolymer sheets (the PPc group). In each group, gross and histological evaluations were performed at 1 month (n = 3), 3 months (n = 3), and 6 months (n = 3) after implantation. We obtained high survival rates in all groups, but only the PPc group attained thick tracheal walls with granular tissues and no tracheal regeneration. On the other hand, the aTET and Ag groups reproducibly achieved complete tracheal regeneration in 6 months. So, an aTET could be a promising candidate for tracheal regeneration grafts.

9.
Bioengineering (Basel) ; 11(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38790301

RESUMO

The administration of mesenchymal stem cells (MSCs) has a positive effect on wound healing; however, the lack of adequate MSC engraftment at the wound site is a major limiting factor in current MSC-based therapies. In this study, a biosheet prepared using in-body tissue architecture (iBTA) was used as a material to address these problems. This study aimed to assess and evaluate whether biosheets containing somatic stem cells would affect the wound healing process in dogs. Biosheets were prepared by subcutaneously embedding molds in beagles. These were then evaluated grossly and histologically, and the mRNA expression of inflammatory cytokines, interleukins, and Nanog was examined in some biosheets. Skin defects were created on the skin of the beagles to which the biosheets were applied. The wound healing processes of the biosheet and control (no biosheet application) groups were compared for 8 weeks. Nanog mRNA was expressed in the biosheets, and SSEA4/CD105 positive cells were observed histologically. Although the wound contraction rates differed significantly in the first week, the biosheet group tended to heal faster than the control group. This study revealed that biosheets containing somatic stem cells may have a positive effect on wound healing.

10.
Bioengineering (Basel) ; 11(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38790329

RESUMO

INTRODUCTION: Chronic wounds caused by diabetes or lower-extremity artery disease are intractable because the wound healing mechanism becomes ineffective due to the poor environment of the wound bed. Biosheets obtained using in-body tissue architecture (iBTA) are collagen-based membranous tissue created within the body and which autologously contain various growth factors and somatic stem cells including SSEA4-posituve cells. When applied to a wound, granulation formation can be promoted and epithelialization may even be achieved. Herein, we report our clinical treatment experience with seven cases of intractable diabetic foot ulcers. CASES: Seven patients, from 46 to 93 years old, had large foot ulcers including in the heel area, which were failing to heal with standard wound treatment. METHODS: Two or four Biosheet-forming molds were embedded subcutaneously in the chest or abdomen, and after 3 to 6 weeks, the molds were removed. Biosheets that formed inside the mold were obtained and applied directly to the wound surface. RESULTS: In all cases, there were no problems with the mold's embedding and removal procedures, and Biosheets were formed without any infection or inflammation during the embedding period. The Biosheets were simply applied to the wounds, and in all cases they adhered within one week, did not fall off, and became integrated with the wound surface. Complete wound closure was achieved within 8 weeks in two cases and within 5 months in two cases. One patient was lost due to infective endocarditis from septic colitis. One case required lower leg amputation due to wound recurrence, and one case achieved wound reduction and wound healing in approximately 9 months. CONCLUSIONS: Biosheets obtained via iBTA promoted wound healing and were extremely useful for intractable diabetic foot ulcers involving the heel area.

11.
Bioengineering (Basel) ; 11(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534477

RESUMO

Biotubes are autologous tubular tissues developed within a patient's body through in-body tissue architecture, and they demonstrate high potential for early clinical application as a vascular replacement. In this pilot study, we used large animals to perform implantation experiments in preparation for preclinical testing of Biotube. The biological response after Biotube implantation was histologically evaluated. The designed Biotubes (length: 50 cm, internal diameter: 4 mm, and wall thickness: 0.85 mm) were obtained by embedding molds on the backs of six goats for a predetermined period (1-5 months). The same goats underwent bypass surgery on the carotid arteries using Biotubes (average length: 12 cm). After implantation, echocardiography was used to periodically monitor patency and blood flow velocity. The maximum observation period was 6 months, and tissue analysis was conducted after graft removal, including the anastomosis. All molds generated Biotubes that exceeded the tensile strength of normal goat carotid arteries, and eight randomly selected Biotubes were implanted. Thrombotic occlusion occurred immediately postoperatively (1 tube) if anticoagulation was insufficient, and two tubes, with insufficient Biotube strength (<5 N), were ruptured within a week. Five tubes maintained patency for >2 months without aneurysm formation. The spots far from the anastomosis became stenosed within 3 months (3 tubes) when Biotubes had a wide intensity distribution, but the shape of the remaining two tubes remained unchanged for 6 months. The entire length of the bypass region was walled with an αSMA-positive cell layer, and an endothelial cell layer covered most of the lumen at 2 months. Complete endothelial laying of the luminal surface was obtained at 3 months after implantation, and a vascular wall structure similar to that of native blood vessels was formed, which was maintained even at 6 months. The stenosis was indicated to be caused by fibrin adhesion on the luminal surface, migration of repair macrophages, and granulation formation due to the overproliferation of αSMA-positive fibroblasts. We revealed the importance of Biotubes that are homogeneous, demonstrate a tensile strength > 5 N, and are implanted under appropriate antithrombotic conditions to achieve long-term patency of Biotube. Further, we clarified the Biotube regeneration process and the mechanism of stenosis. Finally, we obtained the necessary conditions for a confirmatory implant study planned shortly.

12.
Bioengineering (Basel) ; 11(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38671826

RESUMO

This study investigated six-month outcomes of first models of ascending aortic replacement. The molds used to produce the Biotube were implanted subcutaneously in goats. After 2-3 months, the molds were explanted to obtain the Biotubes (inner diameter, 12 mm; wall thickness, 1.5 mm). Next, we performed ascending aortic replacement using the Biotube in five allogenic goats. At 6 months, the animals underwent computed tomography (CT) and histologic evaluation. As a comparison, we performed similar surgeries using glutaraldehyde-fixed autologous pericardial rolls or pig-derived heterogenous Biotubes. At 6 months, CT revealed no aneurysmalization of the Biotube or pseudoaneurysm formation. The histologic evaluation showed development of endothelial cells, smooth muscle cells, and elastic fibers along the Biotube. In the autologous pericardium group, there was no evidence of new cell development, but there was calcification. The histologic changes observed in the heterologous Biotube group were similar to those in the allogenic Biotube group. However, there was inflammatory cell infiltration in some heterologous Biotubes. Based on the above, we could successfully create the world's first Biotube-based ascending aortic replacement models. The present results indicate that the Biotube may serve as a scaffold for aortic tissue regeneration.

13.
Bioconjug Chem ; 24(2): 159-66, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23360504

RESUMO

We have developed a substrate-mediated transfection method called "deposition transfection technology" using a poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) homopolymer with both thermoresponsive and cationic characteristics. In this study, we enhanced deposition transfection efficiency by using tris(hydroxymethyl)aminomethane (Tris buffer) as a pH adjuster for transfection solution composed of PDMAEMA and plasmid DNA (pDNA). PDMAEMA with a molecular weight of 9.7 × 10(4) g mol(-1) was synthesized by photoinduced radical polymerization. The pH of PDMAEMA solution was increased gradually in the range from 8 to 11 by the addition of Tris, and then the solubility of PDMAEMA was significantly decreased and the dissolution time was extended from 15 to 40 min at Tris/PDMAEMA ratio of 1 and higher. On the other hand, while the polyion complexes (polyplexes) were formed by mixing PDMAEMA with luciferase-encoding plasmid DNA even under an excess amount of Tris at Tris/PDMAEMA ratio of 8, the binding affinity between PDMAEMA and pDNA was decreased with increasing Tris at Tris/PDMAEMA ratio of 2 and higher. When HeLa cells, smooth muscle cells, and cardiac fibroblasts were transfected by the deposition method using polyplex solution containing various amounts of Tris, the transgene expression dramatically increased at a Tris/PDMAEMA ratio of 2 in all cell types, which were more than 150-fold in HeLa cells, 40-fold in smooth muscle cells, and 30-fold in cardiac fibroblasts compared to those in the Tris-free condition. In addition, the enhanced transgene expression by Tris was sustained for over 10 days post-transfection as well as that observed in Tris-free condition. Thus, deposition transfection efficiency can be dramatically enhanced by using Tris buffer as a pH adjuster for polyplex solution.


Assuntos
DNA/administração & dosagem , Metacrilatos/metabolismo , Nylons/metabolismo , Plasmídeos/administração & dosagem , Transfecção/métodos , Trometamina/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Cães , Células HeLa , Humanos , Metacrilatos/química , Nylons/química , Trometamina/química
14.
Biomed Mater ; 18(6)2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37827163

RESUMO

With the advancement of tissue engineering technologies, implantable materials have been developed for use in facial plastic surgery, including auriculoplasty and rhinoplasty. Tissue-engineered cartilage comprising only cells and cell-produced extracellular matrix is considered valuable as there is no need to consider problems associated with scaffold absorption or immune responses commonly related to conventional artificial materials. However, it is exceedingly difficult to produce large-sized complex shapes of cartilage without the use of scaffolds. In this study, we describe the production of shape-designable cartilage using a novel cell self-aggregation technique (CAT) and chondroprogenitor cells derived from human induced pluripotent stem cells as the source. The method described does not require special equipment such as bio-3D printers, and the produced tissue can be induced into well-matured cartilage with abundant cartilage matrixin vitro. Using CAT, we were able to generate cartilage in the form of rings or tubes with adjustable inner diameter and curvature, over a range of several centimeters, without the use of scaffolds. Thein vitrofabrication of shape-designable cartilage using CAT is a promising development in facial plastic surgery.


Assuntos
Células-Tronco Pluripotentes Induzidas , Alicerces Teciduais , Humanos , Cartilagem/fisiologia , Engenharia Tecidual/métodos , Matriz Extracelular , Condrogênese
15.
Bioconjug Chem ; 23(4): 751-7, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22435888

RESUMO

A poly(N,N-dimethylaminoethylmethacrylate) (PDMAEMA) homopolymer with both thermoresponsive and cationic characteristics was applied to a vector for use in deposition transfection. PDMAEMA with a molecular weight of 2.5 × 10(5) g mol(-1) was synthesized by photoinduced radical polymerization. Polyplexes approximately 750 nm in size were formed by mixing PDMAEMA with luciferase-encoding plasmid DNA. The polyplexes had a lower critical solution temperature (LCST) of approximately 30 °C. In addition, they exhibited excellent adsorption and durability on a polystyrene surface, as confirmed by a surface chemical compositional analysis. When HeLa cells and primary cells were cultured on a substrate coated with the polyplexes, high transgene expression and cell viability of more than 90% were obtained at low charge ratios (PDMAEMA/plasmid DNA ratio) ranging from 2 to 8. In addition, transgene expression was sustained for over 2 weeks post-transfection whereas decreased expression was observed 5 days post-transfection when the conventional solution-mediated transfection method was used. Thus, high and sustained transgene expression as well as high cell viability can be realized by using small amounts of PDMAEMA as a deposition transfection material.


Assuntos
DNA/química , DNA/genética , Portadores de Fármacos/química , Metacrilatos/química , Nylons/química , Tensoativos/química , Temperatura , Transfecção/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Cães , Portadores de Fármacos/toxicidade , Células HeLa , Humanos , Metacrilatos/toxicidade , Nylons/toxicidade , Tensoativos/toxicidade
16.
Front Vet Sci ; 9: 837319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464349

RESUMO

Purposes: We report the experimental use of completely autologous biomaterials (Biosheets) made by "in-body tissue architecture" that could resolve problems in artificial materials and autologous pericardium. Here, Biosheets were implanted into full-thickness right ventricular outflow tract defects in a rat model. Their feasibility as a reparative material for cardiac defects was evaluated. Methods: As the evaluation of mechanical properties of the biosheets, the elastic moduli of the biosheets and RVOT-free walls of rats were examined using a tensile tester. Biosheets and expanded polytetrafluoroethylene sheet were used to repair transmural defects surgically created in the right ventricular outflow tracts of adult rat hearts (n = 9, each patch group). At 4 and 12 weeks after the operation, the hearts were resected and histologically examined. Results: The strength and elastic moduli of the biosheets were 421.3 ± 140.7 g and 2919 ± 728.9 kPa, respectively, which were significantly higher than those of the native RVOT-free walls (93.5 ± 26.2 g and 778.6 ± 137.7 kPa, respectively; P < 0.005 and P < 0.001, respectively). All patches were successfully implanted into the right ventricular outflow tract-free wall of rats. Dense fibrous adhesions to the sternum on the epicardial surface were also observed in 7 of 9 rats with ePTFE grafts, whereas 2 of 9 rats with biosheets. Histologically, the vascular-constructing cells were infiltrated into Biosheets. The luminal surfaces were completely endothelialized in all groups at each time point. There was also no accumulation of inflammatory cells. Conclusions: Biosheets can be formed easily and have sufficient strength and good biocompatibility as a patch for right ventricular outflow tract repair in rats. Therefore, Biosheet may be a suitable material for reconstructive surgery of the right ventricular outflow tract.

17.
Sci Rep ; 12(1): 20279, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434016

RESUMO

Tracheas have a tubular structure consisting of cartilage rings continuously joined by a connective tissue membrane comprising a capillary network for tissue survival. Several tissue engineering efforts have been devoted to the design of scaffolds to produce complex structures. In this study, we successfully fabricated an artificial materials-free autologous tracheal analogue with engraftment ability by combining in vitro cell self-aggregation technique and in-body tissue architecture. The cartilage rings prepared by aggregating chondrocytes on designated culture grooves that induce cell self-aggregation were alternately connected to the connective tissues to form tubular tracheal analogues by subcutaneous embedding as in-body tissue architecture. The tracheal analogues allogeneically implanted into the rat trachea matured into native-like tracheal tissue by covering of luminal surfaces by the ciliated epithelium with mucus-producing goblet cells within eight months after implantation, while maintaining their structural integrity. Such autologous tracheal analogues would provide a foundation for further clinical research on the application of tissue-engineered tracheas to ensure their long-term functionality.


Assuntos
Engenharia Tecidual , Traqueia , Ratos , Animais , Engenharia Tecidual/métodos , Transplante Autólogo , Condrócitos , Regeneração
18.
Biomed Mater ; 17(6)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36270422

RESUMO

Three-dimensional cell constructs comprising only tissue-specific cells and extracellular matrix secreted by them would be ideal transplants, but their fabrication in a cell aggregation manner without cell scaffolds relies on random cell self-aggregation, making the control of their size and shape difficult. In this study, we propose a method to fabricate band-shaped tissues by inducing the self-aggregation of cell sheets using the developed cell self-aggregation technique (CAT). Acting as cell aggregation stoppers, silicone semicircular pillars were attached to two positions equidistant from both short ends of the rounded rectangular culture groove and coated with a specifically charged biomimetic polymer as a CAT-inducing surface. Mesenchymal stem cells, chondrocytes, and skeletal myoblast cells seeded on the surface of the culture grooves formed band-shaped aggregates between the two aggregation stoppers following spontaneous detachment with aggregation of the cell sheet from the outer edge of the grooves during day one of culture. The aggregated chondrocyte band matured into a cartilage-like plate with an abundant cartilage matrix while retaining its band shape after two weeks of chondrogenic cultivation. Additionally, the aggregates of mesenchymal stem cells and myoblast cell bands could patch the induced collagen membrane derived from rat subcutaneous tissue like a bandage immediately after their formation and successfully mature into fat and muscle tissues, respectively. These results indicate that, depending on the cell type, scaffold-free band-shaped cell aggregates produced by CAT have the potential to achieve tissue regeneration that follows the shape of the defect viain vitromaturation culture orin vivoorganization.


Assuntos
Condrogênese , Células-Tronco Mesenquimais , Ratos , Animais , Cartilagem/fisiologia , Condrócitos , Mesoderma
19.
EJVES Vasc Forum ; 54: 27-35, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35128505

RESUMO

OBJECTIVE: There is a need for small diameter vascular substitutes in the absence of available autologous material. A small diameter, long tissue engineered vascular graft was developed using a completely autologous approach called "in body tissue architecture technology (iBTA)". The aim of this pilot study was to evaluate "Biotubes", iBTA induced autologous collagenous tubes, for their potential use as small diameter vascular bypass conduits. METHODS: Biotubes (internal diameter 4 mm, length 50 cm, wall thickness 0.85 mm) were prepared by subcutaneous embedding of plastic moulds (Biotube Maker) in three goats for approximately two months. Allogenic Biotubes (length 10 cm [n = 2], 15 cm [n = 2], 22 cm [n = 2]) were bypassed to both carotid arteries by end to side anastomosis with their ligation between the anastomoses in another three goats. Residual Biotubes were examined for their mechanical properties. After four weeks, the harvested Biotubes were evaluated histologically. RESULTS: All Biotubes had sufficient pressure resistance, approximately 3000 mmHg. Although wall thickening occurred at two proximal anastomosis sites, all six grafts were patent without luminal thrombus formation, stenosis, or aneurysm deformation throughout the implantation period. Endothelial cells covered both anastomosis sites almost completely, with partial covering in the central portion of the grafts. Furthermore, α smooth muscle actin positive cells infiltrated the middle layer along almost the entire graft length. CONCLUSION: This preliminary study showed that small diameter, long, tissue engineered Biotubes could function properly as arterial bypass conduits in a large animal for one month without any abnormal change in vascular shape. Thus, small diameter, long Biotubes are potentially viable conduits, which are biocompatible and labour non-intensive, and therefore, suitable for clinical practice. Additionally, Biotubes can start the regeneration process in a short period of time.

20.
J Biosci Bioeng ; 133(6): 509-514, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35382990

RESUMO

The industrial use of living organisms for bioproduction of valued substances has been accomplished mostly using microorganisms. To produce high-value bioproducts such as antibodies that require glycosylation modification for better performance, animal cells have been recently gaining attention in bioengineering because microorganisms are unsuitable for producing such substances. Furthermore, animal cells are now classified as products because a large number of cells are required for use in regenerative medicine. In this article, we review animal cell technologies and the use of animal cells, focusing on useable cell generation and large-scale production of animal cells. We review recent advance in mammalian cell line development because this is the first step in the production of recombinant proteins, and it largely affects the efficacy of the production. We next review genetic engineering technology focusing on CRISPR-Cas system as well as surrounding technologies as these methods have been gaining increasing attention in areas that use animal cells. We further review technologies relating to bioreactors used in the context of animal cells because they are essential for the mass production of target products. We also review tissue engineering technology because tissue engineering is one of the main exits for mass-produced cells; in combination with genetic engineering technology, it can prove to be a promising treatment for patients with genetic diseases after the establishment of induced pluripotent stem cell technology. The technologies highlighted in this review cover brief outline of the recent animal cell technologies related to industrial and medical applications.


Assuntos
Sistemas CRISPR-Cas , Engenharia Genética , Animais , Reatores Biológicos , Linhagem Celular , Edição de Genes/métodos , Humanos , Mamíferos/genética , Medicina Regenerativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA