Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 89(22): 12450-12457, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29063767

RESUMO

Combining the electrophoresis and conventional Coulter methods, we previously proposed the electrophoretic Coulter method (ECM), enabling simultaneous analysis of the size, number, and zeta potential of individual specimens. We validated the ECM experimentally using standard polystyrene particles and red blood cells (RBCs) from sheep; the latter was the first ECM application to biological particles in biotechnology research. However, specimens are prevented from passing through the ECM module aperture, which prevents accurate determination of the zeta potential of each specimen. This problem is caused by electro-osmotic flow (EOF) due to the high zeta potential at the ECM microchannel surfaces. To significantly improve ECM feasibility for biomedicine, we here propose a method to estimate the zeta potential at the ECM microchannel surfaces separate from the zeta potential of each specimen, by investigating the electric-field dependence of the specimen's experimental electrophoretic velocity. We minimize the zeta potential at the microchannel surfaces by applying an organic-molecule coating, and we suppress the surface zeta potential and its resultant EOF by optimizing the microchannel geometry. We demonstrate that the ECM can distinguish between different biological cells using the differences in zeta potential values and/or sizes. We also demonstrate that the ECM can determine the number of biomolecules attached to individual cells and identify whether the average cell state in an analyzed vial is alive or dead. The high-performance ECM can detect cellular morphology alterations, improve immunologic test sensitivity, and identify cell states (living, dying, and dead); this information is clinically useful for early diagnosis and its follow-up.


Assuntos
Apoptose , Células Cultivadas , Eletroforese Capilar/instrumentação , Humanos , Tamanho da Partícula , Propriedades de Superfície
2.
Heliyon ; 3(8): e00386, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28840196

RESUMO

The ratio of the surface area to the volume of materials increases in inverse proportion to their size and therefore the surface area of nanostructures and nanomaterials is extremely large compared to that of macroscopic materials of the same volume, thanks to which it is supposed that chemical and biochemical reactions may be greatly enhanced and target molecules and cells may be efficiently trapped on the surface of nanomaterials. It is well known that C60 molecules are stable both physically and chemically and the affinity of C60 molecules with biomolecules is rather high. Here, we synthesise fibres composed of C60 and sulphur and immobilise the surface of the fibres with the primary antibody; i.e., epithelial cell adhesion molecules (anti-EpCAM), to trap target cells. The primary antibody is evenly immobilised on the fibres confirmed by a fluorescent secondary antibody attached to the primary one and then TE2 esophageal and DLD-1 colon cancer cells are successfully trapped by the primary antibody immobilised on the fibres thanks to its high affinity with TE2 and DLD-1 cells, whereas few IM9 B lymphoblast cells are captured on the fibres since the affinity of the primary antibody with IM9 cells is extremely low. Furthermore, those cells trapped by the primary antibody immobilised on the fibres proliferate faster than native cells thanks to the primary antibody acting as a growth factor. The present result suggests that different types of cells can be trapped and grown on nano fibres by immobilising appropriate antibody molecules on the surface of the fibres. Even an extremely small number of cells in sample fluids may be analysed and characterised for the detection of diseases such as cancer in the early stage by trapping and proliferating target cells on the fibres.

3.
Heliyon ; 2(9): e00171, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27722207

RESUMO

Magnetic nanoparticles are of great importance particularly in the field of biomedicine as well as nanotechnology and nano materials science and technology. Here, we synthesise magnetic alloy-filling carbon nanoparticles (MA@C NPs) via the following two-step procedure; (1) Irradiation of a laser beam of 266 nm wavelength into super-critical benzene, in which both ferrocene and cobaltocene are dissolved, at 290 °C; and (2) annealing of the particles at 600 and 800 °C. We find that the core particles are composed of cobalt (Co), iron (Fe) and oxygen (O) and covered with carbon layers. The structure of the core particles as-synthesised, and annealed at 600 and 800 °C, is, respectively, amorphous, CoFe2O4 and FeCo. We also investigate the viability of L929 cells in the presence of MA@C NPs and find that there is no serious advert effect of the MA@C NPs on the cell viability thanks to the carbon layers covering the core particles. The magnetic properties are well characterised. The saturation and remnant magnetisation and coercivity increase and as a result, the hyperthermic efficiency becomes higher with an increase in the annealing temperature. The further modification of the surface of the present particles with several functional molecules becomes easier due to the carbon layers, which makes the present particles more valuable. It is therefore supposed that the presently synthesised MA@C NPs may well be utilised for nanotechnology-based biomedical engineering; e.g., nano bioimaging, nano hyperthermia and nano surgery.

4.
Int J Biol Macromol ; 76: 310-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25749105

RESUMO

Polysaccharides that show finest bioactivities and physicochemical properties are always promising for bionanoscience applications. Mauran is such a macromolecule extracted from halophilic bacterium, Halomonas maura for biotechnology and nanoscience applications. Antioxidant properties of MR/CH nanoparticles were studied using biochemical assays to prove the versatility of these test nanoparticles for biomedical applications. Here, we demonstrate the prospects of extremophilic polysaccharide, mauran based nanoparticles for scavenging reactive oxygen species in both in vitro and ex vivo conditions. 5-fluorouracil loaded MR/CH nanoparticles were tested for anticancer proliferation and compared their therapeutic efficiency using breast adenocarcinoma and glioma cells. Fluorescently labeled nanoparticles were employed to show the cellular uptake of these nanocarriers using confocal microscopic imaging and flow cytometry.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Halomonas/química , Nanopartículas/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Linhagem Celular Tumoral , Humanos , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Int J Nanomedicine ; 9: 437-59, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24531392

RESUMO

The efficient targeting and therapeutic efficacy of a combination of drugs (curcumin and 5-Fluorouracil [5FU]) and magnetic nanoparticles encapsulated poly(D,L-lactic-co-glycolic acid) nanoparticles, functionalized with two cancer-specific ligands are discussed in our work. This multifunctional, highly specific nanoconjugate resulted in the superior uptake of nanoparticles by cancer cells. Upon magnetic hyperthermia, we could harness the advantages of incorporating magnetic nanoparticles that synergistically acted with the drugs to destroy cancer cells within a very short period of time. The remarkable multimodal efficacy attained by this therapeutic nanoformulation offers the potential for targeting, imaging, and treatment of cancer within a short period of time (120 minutes) by initiating early and late apoptosis.


Assuntos
Curcumina/administração & dosagem , Fluoruracila/administração & dosagem , Nanopartículas de Magnetita/administração & dosagem , Neoplasias/terapia , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular , Terapia Combinada , Portadores de Fármacos/química , Ácido Fólico/química , Humanos , Hipertermia Induzida/métodos , Ácido Láctico/química , Células MCF-7 , Nanopartículas de Magnetita/química , Camundongos , Nanoconjugados/administração & dosagem , Nanoconjugados/química , Nanomedicina , Nanotecnologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Transferrina/química
6.
Macromol Biosci ; 14(12): 1696-711, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25181322

RESUMO

A nanoformulation composed of a ribosome inactivating protein-curcin and a hybrid solid lipid nanovector has been devised against glioblastoma. The structurally distinct nanoparticles were highly compatible to human endothelial and neuronal cells. A sturdy drug release from the particles, recorded upto 72 h, was reflected in the time-dependent toxicity. Folate-targeted nanoparticles were specifically internalized by glioma, imparting superior toxicity and curbed an aggressively proliferating in vitro 3D cancer mass in addition to suppressing the anti-apoptotic survivin and cell matrix protein vinculin. Combined with the imaging potential of the encapsulated dye, the nanovector emanates as a multifunctional anti-cancer system.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Lipídeos , Imagem Molecular , Nanoestruturas/química , Proteínas Inativadoras de Ribossomos Tipo 1 , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Lipídeos/química , Lipídeos/farmacocinética , Lipídeos/farmacologia , Proteínas de Neoplasias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Proteínas Inativadoras de Ribossomos Tipo 1/química , Proteínas Inativadoras de Ribossomos Tipo 1/farmacocinética , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Survivina , Vinculina/metabolismo
7.
J Biomed Nanotechnol ; 10(6): 885-99, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24749386

RESUMO

Microbial exopolysaccharides (EPSs) are highly heterogeneous polymers produced by fungi and bacteria that have garnered considerable attention and have remarkable potential in various fields, including biomedical research. The necessity of biocompatible materials to coat and stabilize nanoparticles is highly recommended for successful application of the same in biomedical regime. In our study we have coated magnetic nanoparticles (MNPs) with two bacterial EPS-mauran (MR) and gellan gum (GG). The biocompatibility of EPS coated MNPs was enhanced and we have made it multifunctional by attaching targeting moiety, folate and with encapsulation of a potent anticancerous drug, 5FU. We have conjugated an imaging moiety along with nanocomposite to study the effective uptake of nanoparticles. It was also observed that the dye labeled folate targeted nanoparticles could effectively enter into cancer cells and the fate of nanoparticles was tracked with Lysotracker. The biocompatibility of EPS coated MNPs and synergistic effect of magnetic hyperthermia and drug for enhanced antiproliferation of cancer cells was also evaluated. More than 80% of cancer cells was killed within a period of 60 min when magnetic hyperthermia (MHT) was applied along with drug loaded EPS coated MNPs, thus signifying the combined effect of drug loaded MNPs and MHT. Our results suggests that MR and GG coated MNPs exhibited excellent biocompatibility with low cell cytotoxicity, high therapeutic potential, and superparamagnetic behavior that can be employed as prospective candidates for bacterial EPS based targeted drug delivery, cancer cell imaging and for MHT for killing cancer cells within short period of time.


Assuntos
Fluoruracila/administração & dosagem , Nanopartículas de Magnetita/uso terapêutico , Terapia de Alvo Molecular/métodos , Nanocápsulas/química , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Polissacarídeos Bacterianos/química , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/química , Linhagem Celular Tumoral , Rastreamento de Células/métodos , Terapia Combinada , Sinergismo Farmacológico , Fluoruracila/química , Humanos , Hipertermia Induzida , Nanopartículas de Magnetita/química , Camundongos , Nanocápsulas/uso terapêutico , Resultado do Tratamento
8.
Cancer Nanotechnol ; 3(1-6): 1-12, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-26069492

RESUMO

Cancer is one of the leading causes of death in most parts of the world and is a very serious cause of concern particularly in developing countries. In this work, we prepared and evaluated the aptamer-labeled paclitaxel-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (Apt-PTX-PLGA NPs) which can ameliorate drug bioavailability and enable accurate drug targeting to cancer cells with controlled drug release for cancer therapy. Paclitaxel-loaded PLGA nanoparticles (PTX-PLGA NPs) were formulated by a single-emulsion/solvent evaporation method and were further surface-functionalized with a chemical cross-linker bis(sulfosuccinimidyl) suberate (BS3) to enable binding of aptamer on to the surface of the nanoparticles. The prepared nanoparticles were characterized by atomic force microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Cytotoxicity studies were carried out using normal human mammary epithelial cells (HMEC cells) and human glial cancer cells (GI-1 cells) by methylthiazolyldiphenyl-tetrazolium bromide assay and Alamar blue assay, which confirmed that PTX-PLGA NPs with aptamer conjugation (Apt-PTX-PLGA NPs) were comparatively non-toxic to HMEC cells while toxic to GI-1 cancer cells. Cellular uptake of PTX-PLGA NPs with and without aptamer conjugation was studied using GI-1 cells and monitored by confocal microscopy and phase contrast microscopy. Our studies demonstrated significant internalization and retention of nanoparticles inside the cells, inducing apoptosis. The preferential accumulation of PTX-PLGA NPs within the cancer cells were also confirmed by flow cytometry-based uptake studies. The results indicated that Apt-PTX-PLGA NPs could be a promising targeted therapeutic delivery vehicle for cancer treatment.

9.
Int J Nanomedicine ; 7: 3769-86, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22888233

RESUMO

This paper presents the synthesis of aqueous cadmium sulfide (CdS) quantum dots (QDs) and silica-encapsulated CdS QDs by reverse microemulsion method and utilized as targeted bio-optical probes. We report the role of CdS as an efficient cell tag with fluorescence on par with previously documented cadmium telluride and cadmium selenide QDs, which have been considered to impart high levels of toxicity. In this study, the toxicity of bare QDs was efficiently quenched by encapsulating them in a biocompatible coat of silica. The toxicity profile and uptake of bare CdS QDs and silica-coated QDs, along with the CD31-labeled, silica-coated CdS QDs on human umbilical vein endothelial cells and glioma cells, were investigated. The effect of size, along with the time-dependent cellular uptake of the nanomaterials, has also been emphasized. Enhanced, high-specificity imaging toward endothelial cell lines in comparison with glioma cells was achieved with CD31 antibody-conjugated nanoparticles. The silica-coated nanomaterials exhibited excellent biocompatibility and greater photostability inside live cells, in addition to possessing an extended shelf life. In vivo biocompatibility and localization study of silica-coated CdS QDs in medaka fish embryos, following direct nanoparticle exposure for 24 hours, authenticated the nanomaterials' high potential for in vivo imaging, augmented with superior biocompatibility. As expected, CdS QD-treated embryos showed 100% mortality, whereas the silica-coated QD-treated embryos stayed viable and healthy throughout and after the experiments, devoid of any deformities. We provide highly cogent and convincing evidence for such silica-coated QDs as a model nanoparticle in practice, to achieve in vitro and in vivo precision targeted imaging.


Assuntos
Compostos de Cádmio/química , Nanopartículas/química , Imagem Óptica/métodos , Pontos Quânticos , Compostos de Selênio/química , Dióxido de Silício/química , Animais , Compostos de Cádmio/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Glioma/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Teste de Materiais , Nanopartículas/toxicidade , Oryzias , Molécula-1 de Adesão Celular Endotelial a Plaquetas/química , Compostos de Selênio/toxicidade , Dióxido de Silício/toxicidade , Espectrometria de Fluorescência , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA