Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Cell Physiol ; 234(1): 486-499, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29904924

RESUMO

Actin binding LIM 1 (abLIM1) is a cytoskeletal actin-binding protein that has been implicated in interactions between actin filaments and cytoplasmic targets. Previous biochemical and cytochemical studies have shown that abLIM1 interacts and co-localizes with F-actin in the retina and muscle. However, whether abLIM1 regulates osteoclast differentiation has not yet been elucidated. In this study, we examined the role of abLIM1 in osteoclast differentiation and function. We found that abLIM1 expression was upregulated during receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation, and that a novel transcript of abLIM1 was exclusively expressed in osteoclasts. Overexpression of abLIM1 in the murine monocytic cell line, RAW-D suppressed osteoclast differentiation and decreased expression of several osteoclast-marker genes. By contrast, small interfering RNA-induced knockdown of abLIM1 enhanced the formation of multinucleated osteoclasts and markedly increased the expression of the osteoclast-marker genes. Mechanistically, abLIM1 regulated the localization of tubulin, migration, and fusion in osteoclasts. Thus, these results indicate that abLIM1 negatively controls osteoclast differentiation by regulating cell migration and fusion mediated via actin formation.


Assuntos
Actinas/genética , Diferenciação Celular/genética , Proteínas com Domínio LIM/genética , Proteínas dos Microfilamentos/genética , Osteogênese/genética , Citoesqueleto de Actina/genética , Animais , Movimento Celular/genética , Citoplasma/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Silenciamento de Genes , Humanos , Proteínas com Domínio LIM/antagonistas & inibidores , Camundongos , Proteínas dos Microfilamentos/antagonistas & inibidores , Osteoclastos/metabolismo , RNA Interferente Pequeno/genética , Tubulina (Proteína)/genética
2.
Exp Cell Res ; 359(2): 415-430, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28847484

RESUMO

Osteoclasts are multinucleated bone-resorbing cells that are formed by fusion of monocyte/macrophage lineage. Osteoclasts and macrophages generate podosomes that are actin-based dynamic organelles implicated in cell adhesion, spreading, migration, and degradation. However, the detailed mechanisms of podosome organization remain unknown. Here, we identified the Rho-specific guanine-nucleotide exchange factor (Rho-GEF) Plekhg5 as an up-regulated gene during differentiation of osteoclasts from macrophages. Knockdown of Plekhg5 with small interfering RNA in both macrophages and osteoclasts induced larger cell formation with impaired cell polarity and resulted in an elongated and flattened shape. In macrophages, Plekhg5 depletion enhanced random migration, but impaired directional migration, adhesion, and matrix degradation. Plekhg5 in osteoclasts affected random migration, podosome organization, and bone resorption. Plekhg5 depletion affected signaling and localization of several Rho downstream effectors. In fact, end-binding protein 1 (EB1), cofilin and vinculin were abnormally localized in Plekhg5-depleted cells, and mDia1 and LIM kinase (LIMK)1 were upregulated in Plekhg5-depleted cells compared with control cells. However, overexpression of Plekhg5 in macrophages induced an increase in its mRNA level, but failed to increase the protein level, indicating that overexpressed Plekhg5 was degraded in macrophages but not HEK293T cells. Thus, Plekhg5 affects cell polarity, migration, adhesion, degradation, and podosome organization in macrophages and osteoclasts.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Macrófagos/metabolismo , Monócitos/metabolismo , Osteoclastos/metabolismo , Podossomos/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Adesão Celular , Diferenciação Celular , Linhagem Celular , Movimento Celular , Polaridade Celular , Cofilina 1/genética , Cofilina 1/metabolismo , Forminas , Regulação da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Quinases Lim/genética , Quinases Lim/metabolismo , Macrófagos/ultraestrutura , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Monócitos/ultraestrutura , Osteoclastos/ultraestrutura , Podossomos/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Imagem com Lapso de Tempo , Vinculina/genética , Vinculina/metabolismo
3.
Mol Cell Biochem ; 407(1-2): 161-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26048715

RESUMO

Punicalagin is a bioactive polyphenol that is classified as an ellagitannin. Although punicalagin has been shown to have various pharmacological effects, such as anti-oxidative, anti-inflammatory, and anti-tumor effects, no studies have reported the effects of punicalagin on osteoclasts (OCLs). In this study, we investigated the effects of punicalagin on OCL differentiation by receptor activator of nuclear factor kappa-B ligand in the murine monocytic RAW-D cell line and bone marrow-derived macrophages (BMMs). Treatment with punicalagin significantly inhibited OCL formation from RAW-D cells and BMMs and prevented bone resorption of BMM-derived OCLs. Moreover, punicalagin impaired multinucleation and actin-ring formation in OCLs, and decreased the protein levels of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), which is a master regulator of OCL differentiation, and concomitantly reduced the expression levels of Src and cathepsin K, which are transcriptionally regulated by NFATc1. The effects of punicalagin on intracellular signaling during the OCL differentiation of BMMs indicated that punicalagin-treated OCLs displayed markedly reduced phosphorylation of Jun N-terminal kinase and Akt, and partially impaired phosphorylation of extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and inhibitor of nuclear factor kappa-B alpha compared with untreated OCLs. Thus, punicalagin may affect bone metabolism by inhibiting OCL differentiation.


Assuntos
Taninos Hidrolisáveis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Transcrição NFATC/genética , Osteoclastos/citologia , Proteínas Proto-Oncogênicas c-akt/genética
4.
Biometals ; 28(4): 725-32, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25981584

RESUMO

Cobalt protoporphyrin (CoPP) is a metallo-protoporphyrin that works as a powerful inducer of heme oxigenase-1 (HO-1) in various tissues and cells. Our recent studies have demonstrated that induction of HO-1 by several reagents inhibited differentiation and activation of osteoclasts (OCLs), which are multinucleated bone resorbing cells. However, the effects of CoPP on osteoclastogenesis remain to be elucidated. In this study, we report that CoPP inhibits receptor activator of nuclear factor κB ligand (RANKL)-induced OCL formation in a dose dependent manner. Importantly, CoPP had little cytotoxicity, but rather enhanced cell proliferation of OCLs. CoPP suppressed the protein levels of nuclear factor of activated T cells cytoplasmic-1 (NFATc1) as well as those of OCLs markers such as Src and cathepsin K, which are transcriptionally regulated by NFATc1 in mature OCLs. Western blot analyses also showed that CoPP abolished RANKL-stimulated phosphorylation of several major signaling pathways such as IκB, Akt, ERK, JNK and p38 MAPKs in OCL precursor cells. Thus, our results show that CoPP represses osteoclastogenesis through blocking multiple signaling pathways.


Assuntos
Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Protoporfirinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/metabolismo , Fosforilação/efeitos dos fármacos , Protoporfirinas/química , Ligante RANK/antagonistas & inibidores , Ligante RANK/metabolismo
5.
Phytother Res ; 29(6): 917-24, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25809147

RESUMO

Castalagin is a rare plant polyphenol that is classified as a hydrolyzable tannin. Although it has antioxidant, antitumorigenic, and leishmanicidal effects, the utility of castalagin against bone diseases remain to be elucidated. Here, we investigated the effects of castalagin on the differentiation of osteoclasts (OCLs), multinucleated bone-resorbing cells. After stimulation with receptor activator of nuclear factor kappa-B ligand (RANKL), the formation of OCLs from bone marrow-derived macrophages was significantly inhibited by castalagin even at 1 µM. However, castalagin displayed little cytotoxicity at a higher concentration of 50 µM. The effects of castalagin on intracellular signaling during OCL differentiation showed that castalagin suppresses RANKL-stimulated phosphorylation of major signaling pathways including protein kinase B (Akt), extracellular signal-regulated kinase, Jun N-terminal kinase, p38 mitogen-activated protein kinases, and inhibitor of nuclear factor kappa B alpha. Moreover, following castalagin treatment, the protein levels of nuclear factor of activated T-cells, cytoplasmic 1, a master regulator for OCL differentiation, and NF-κB were decreased. Thus, castalagin exerts inhibitory effects on osteoclastogenesis through blockage of a broad range of signaling pathways, but has low cytotoxicity.


Assuntos
Reabsorção Óssea/metabolismo , Taninos Hidrolisáveis/farmacologia , Osteoclastos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Heme Oxigenase-1/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fosforilação , Ligante RANK/metabolismo
6.
Phytother Res ; 29(11): 1714-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26172226

RESUMO

Bone is constantly controlled by a balance between osteoblastic bone formation and osteoclastic bone resorption. Liquiritigenin is a plant-derived flavonoid and has various pharmacological effects, such as antioxidative, antitumor, and antiinflammatory effects. Here, we show that liquiritigenin has dual effects on the proliferation of bone cells, regarding the promotion of osteoblast differentiation and the inhibition of osteoclast differentiation. Liquiritigenin-treated murine osteoblastic MC3T3-E1 cells showed an increased alkaline phosphatase activity and enhanced phosphorylation of Smad1/5 compared with untreated cells. Moreover, liquiritigenin inhibited osteoclast differentiation, its bone-resorption activity through slightly decreased the phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and inhibitor of nuclear factor kappa Bα; however, the phosphorylation of Akt and p38 slightly increased in bone marrow-derived osteoclasts. The expression levels of the osteoclast marker proteins nuclear factor of activated T-cell cytoplasmic-1, Src, and cathepsin K diminished. These results suggest that liquiritigenin may be useful as a therapeutic and/or preventive agent for osteoporosis or inflammatory bone diseases.


Assuntos
Flavanonas/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Animais , Reabsorção Óssea/prevenção & controle , Osso e Ossos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flavonoides/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Fosforilação , Ligante RANK/metabolismo
7.
J Mater Chem B ; 12(28): 6959-6967, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38913327

RESUMO

Aldehyde dehydrogenase 1A1 (ALDH1A1) stands out as one of the most reliable intracellular biomarkers for stem cells because it is expressed in both cancer stem cells (CSCs) and normal somatic stem cells (NSCs). Although several turn-on fluorescent probes for ALDH1A1 have been developed to visualize CSCs in cancer cells, the discrimination of CSCs from NSCs is difficult. We here report an AND-type dual-responsive fluorescent probe, CHO_ßgal, the near-infrared fluorescence of which can be turned on after responding to both ALDH1A1 and ß-galactosidase. The AND-type dual responsiveness enables CSCs to be clearly visualized, whereas NSCs are non-emissive in microscopy. CSC-positive metastasis model lungs were successfully discriminated from normal lungs in ex vivo staining experiments using CHO_ßgal, whereas the single-input ALDH1A1-responsive probe failed to achieve this discrimination owing to pronounced false-positive fluorescence output from lung NSCs. In tissue slice staining experiments, even in the presence of adjacent normal tissues, the peripheral region-specific localization of CSCs was clear. The versatility of CHO_ßgal holds promise not only as a fundamental in vitro research tool for visualizing CSCs but also as a valuable asset in practical tissue staining diagnosis, significantly contributing to the assessment of cancer malignancy.


Assuntos
Família Aldeído Desidrogenase 1 , Corantes Fluorescentes , Células-Tronco Neoplásicas , Retinal Desidrogenase , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Família Aldeído Desidrogenase 1/metabolismo , Humanos , Retinal Desidrogenase/metabolismo , Animais , Imagem Óptica , Camundongos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Raios Infravermelhos
8.
Front Immunol ; 15: 1384718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745668

RESUMO

Background: Researchers are focusing on cellular therapy for chronic obstructive pulmonary disease (COPD) using mesenchymal stem cells (MSCs), with human bone marrow-derived MSCs (hBM-MSCs) leading the way. However, BM-MSCs may not be as optimal as therapeutic cells owing to their low growth potential, invasive harvesting, and high expression of aging-related genes with poor differentiation potential. Consequently, umbilical cord-derived MSCs (hUC-MSCs), which have many excellent features as allogeneic heterologous stem cells, have received considerable attention. Allogeneic and heterologous hUC-MSCs appear to be promising owing to their excellent therapeutic properties. However, MSCs cannot remain in the lungs for long periods after intravenous infusion. Objective: To develop designer hUC-MSCs (dUC-MSCs), which are novel therapeutic cells with modified cell-adhesion properties, to aid COPD treatment. Methods: dUC-MSCs were cultured on type-I collagen gels and laminin 411, which are extracellular matrices. Mouse models of elastase-induced COPD were treated with hUC-MSCs. Biochemical analysis of the lungs of treated and control animals was performed. Results: Increased efficiency of vascular induction was found with dUC-MSCs transplanted into COPD mouse models compared with that observed with transplanted hUC-MSCs cultured on plates. The transplanted dUC-MSCs inhibited apoptosis by downregulating pro-inflammatory cytokine production, enhancing adhesion of the extracellular matrix to alveolar tissue via integrin ß1, promoting the polarity of M2 macrophages, and contributing to the repair of collapsed alveolar walls by forming smooth muscle fibers. dUC-MSCs inhibited osteoclastogenesis in COPD-induced osteoporosis. hUC-MSCs are a promising cell source and have many advantages over BM-MSCs and adipose tissue-derived MSCs. Conclusion: We developed novel designer cells that may be involved in anti-inflammatory, homeostatic, injury repair, and disease resistance processes. dUC-MSCs repair and regenerate the alveolar wall by enhancing adhesion to the damaged site. Therefore, they can contribute to the treatment of COPD and systemic diseases such as osteoporosis.


Assuntos
Modelos Animais de Doenças , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Doença Pulmonar Obstrutiva Crônica , Regeneração , Animais , Camundongos , Células-Tronco Mesenquimais/metabolismo , Humanos , Doença Pulmonar Obstrutiva Crônica/terapia , Alvéolos Pulmonares , Cordão Umbilical/citologia , Células Cultivadas , Diferenciação Celular , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Camundongos Endogâmicos C57BL , Masculino
9.
Cells ; 12(10)2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37408251

RESUMO

A newly developed therapy using effective-mononuclear cells (E-MNCs) is reportedly effective against radiation-damaged salivary glands (SGs) due to anti-inflammatory and revascularization effects. However, the cellular working mechanism of E-MNC therapy in SGs remains to be elucidated. In this study, E-MNCs were induced from peripheral blood mononuclear cells (PBMNCs) by culture for 5-7 days in medium supplemented with five specific recombinant proteins (5G-culture). We analyzed the anti-inflammatory characteristics of macrophage fraction of E-MNCs using a co-culture model with CD3/CD28-stimulated PBMNCs. To test therapeutic efficacy in vivo, either E-MNCs or E-MNCs depleted of CD11b-positive cells were transplanted intraglandularly into mice with radiation-damaged SGs. Following transplantation, SG function recovery and immunohistochemical analyses of harvested SGs were assessed to determine if CD11b-positive macrophages contributed to tissue regeneration. The results indicated that CD11b/CD206-positive (M2-like) macrophages were specifically induced in E-MNCs during 5G-culture, and Msr1- and galectin3-positive cells (immunomodulatory macrophages) were predominant. CD11b-positive fraction of E-MNCs significantly inhibited the expression of inflammation-related genes in CD3/CD28-stimulated PBMNCs. Transplanted E-MNCs exhibited a therapeutic effect on saliva secretion and reduced tissue fibrosis in radiation-damaged SGs, whereas E-MNCs depleted of CD11b-positive cells and radiated controls did not. Immunohistochemical analyses revealed HMGB1 phagocytosis and IGF1 secretion by CD11b/Msr1-positive macrophages from both transplanted E-MNCs and host M2-macrophages. Thus, the anti-inflammatory and tissue-regenerative effects observed in E-MNC therapy against radiation-damaged SGs can be partly explained by the immunomodulatory effect of M2-dominant macrophage fraction.


Assuntos
Antígenos CD28 , Leucócitos Mononucleares , Camundongos , Animais , Glândulas Salivares , Proteínas Recombinantes , Macrófagos
10.
Front Bioeng Biotechnol ; 11: 1144624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168614

RESUMO

Introduction: Sjögren syndrome (SS) is an autoimmune disease characterized by salivary gland (SG) destruction leading to loss of secretory function. A hallmark of the disease is the presence of focal lymphocyte infiltration in SGs, which is predominantly composed of T cells. Currently, there are no effective therapies for SS. Recently, we demonstrated that a newly developed therapy using effective-mononuclear cells (E-MNCs) improved the function of radiation-injured SGs due to anti-inflammatory and regenerative effects. In this study, we investigated whether E-MNCs could ameliorate disease development in non-obese diabetic (NOD) mice as a model for primary SS. Methods: E-MNCs were obtained from peripheral blood mononuclear cells (PBMNCs) cultured for 7 days in serum-free medium supplemented with five specific recombinant proteins (5G culture). The anti-inflammatory characteristics of E-MNCs were then analyzed using a co-culture system with CD3/CD28-stimulated PBMNCs. To evaluate the therapeutic efficacy of E-MNCs against SS onset, E-MNCs were transplanted into SGs of NOD mice. Subsequently, saliva secretion, histological, and gene expression analyses of harvested SG were performed to investigate if E-MNCs therapy delays disease development. Results: First, we characterized that both human and mouse E-MNCs exhibited induction of CD11b/CD206-positive cells (M2 macrophages) and that human E-MNCs could inhibit inflammatory gene expressions in CD3/CD28- stimulated PBMNCs. Further analyses revealed that Msr1-and galectin3-positive macrophages (immunomodulatory M2c phenotype) were specifically induced in E-MNCs of both NOD and MHC class I-matched mice. Transplanted E-MNCs induced M2 macrophages and reduced the expression of T cell-derived chemokine-related and inflammatory genes in SG tissue of NOD mice at SS-onset. Then, E-MNCs suppressed the infiltration of CD4-positive T cells and facilitated the maintenance of saliva secretion for up to 12 weeks after E-MNC administration. Discussion: Thus, the immunomodulatory actions of E-MNCs could be part of a therapeutic strategy targeting the early stage of primary SS.

11.
Front Bioeng Biotechnol ; 11: 1179830, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434755

RESUMO

Introduction: Two-dimensional cell cultures have contributed substantially to lung cancer research, but 3D cultures are gaining attention as a new, more efficient, and effective research model. A model reproducing the 3D characteristics and tumor microenvironment of the lungs in vivo, including the co-existence of healthy alveolar cells with lung cancer cells, is ideal. Here, we describe the creation of a successful ex vivo lung cancer model based on bioengineered lungs formed by decellularization and recellularization. Methods: Human cancer cells were directly implanted into a bioengineered rat lung, which was created with a decellularized rat lung scaffold reseeded with epithelial cells, endothelial cells and adipose-derived stem cells. Four human lung cancer cell lines (A549, PC-9, H1299, and PC-6) were applied to demonstrate forming cancer nodules on recellularized lungs and histopathological assessment were made among these models. MUC-1 expression analysis, RNA-seq analysis and drug response test were performed to demonstrate the superiority of this cancer model. Results: The morphology and MUC-1 expression of the model were like those of lung cancer in vivo. RNA sequencing revealed an elevated expression of genes related to epithelial-mesenchymal transition, hypoxia, and TNF-α signaling via NF-κB; but suppression of cell cycle-related genes including E2F. Drug response assays showed that gefitinib suppressed PC-9 cell proliferation equally well in the 3D lung cancer model as in 2D culture dishes, albeit over a smaller volume of cells, suggesting that fluctuations in gefitinib resistance genes such as JUN may affect drug sensitivity. Conclusions: A novel ex vivo lung cancer model was closely reproduced the 3D structure and microenvironment of the actual lungs, highlighting its possible use as a platform for lung cancer research and pathophysiological studies.

12.
Acta Biomater ; 165: 102-110, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243376

RESUMO

Ureteral strictures, which can be caused by ureteral injury, radiation therapy, ureterolithiasis, urinary tract infections, and ureteral endometriosis, typically require ureteral reconstruction. Although tissue engineering, autologous alternative tissue transplantation, and surgical techniques applying various flaps have been carried out for ureteral regeneration, all with some success, each method has its advantages and disadvantages. As an alternative, we created the first artificial ureter structures using only live cells and grafted them into healthy rat ureters. Spheroids were created using normal human dermal fibroblasts and human umbilical vein endothelial cells and subsequently laminated using a bio-three-dimensional printer. After molding the laminated spheroids into tubular structures, the artificial ureters were transplanted into live rats. After 2-12 weeks, the animals were sacrificed and their gross and pathological features were examined. In the artificial ureteral lumen of rats with Grade 0-1 hydronephrosis, regeneration of the ureteral epithelium was observed, the thickness of which increased over the course of the experiment. Regeneration of the muscular layer was also observed, extending from the normal ureteral side toward the artificial ureter structure over time. However, complete regeneration was not observed at the end of 12 weeks. Although ureteral peristalsis was noted in all cases, it was weaker than expected. Therefore, we achieved short-segment ureteral regeneration using a cell-only structure. This finding suggests that by applying alternative strategies to this method, such as changing the cell type and composition, regeneration over the entire length of the ureter may be possible in the future. STATEMENT OF SIGNIFICANCE: Until now, ureteral regeneration techniques have been dominated by the use of high-molecular-weight compounds and autologous tissues, and there have been no reports of regeneration using structures made entirely of cells. This is the first report of ureteral regeneration using a tubular structure made from stacked spheroids. Although this study only attained short-segment ureteral regeneration, regeneration of the ureter over a much longer proportion of its length can be achieved in the future by applying other strategies, such as changing the cell type. This study provides a foundation to achieve the future goal of complete regeneration.


Assuntos
Ureter , Obstrução Ureteral , Humanos , Feminino , Ratos , Animais , Células Endoteliais/patologia , Obstrução Ureteral/patologia , Obstrução Ureteral/cirurgia , Engenharia Tecidual/métodos , Impressão Tridimensional
13.
Organogenesis ; 19(1): 2212582, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37183703

RESUMO

Decellularized scaffolds are promising biomaterials for tissue and organ reconstruction; however, strategies to effectively suppress the host immune responses toward these implants, particularly those without chemical crosslinking, remain warranted. Administration of mesenchymal stem cells is effective against immune-mediated inflammatory disorders. Herein, we investigated the effect of isogeneic abdominal adipose-derived mesenchymal stem/stromal cells (ADMSCs) on xenogeneic biomaterial-induced immunoreactions. Peripheral bronchi from pigs, decellularized using a detergent enzymatic method, were engrafted onto tracheal defects of Brown Norway (BN) rats. BN rats were implanted with native pig bronchi (Xenograft group), decellularized pig bronchi (Decellularized Xenograft), or Decellularized Xenograft and ADMSCs (Decellularized Xenograft+ADMSC group). In the latter group, ADMSCs were injected intravenously immediately post implantation. Harvested graft implants were assessed histologically and immunohistochemically. We found that acute rejections were milder in the Decellularized Xenograft and Decellularized Xenograft+ADMSC groups than in the Xenograft group. Mild inflammatory cell infiltration and reduced collagen deposition were observed in the Decellularized Xenograft+ADMSC group. Additionally, ADMSC administration decreased CD8+ lymphocyte counts but increased CD163+ cell counts. In the Decellularized Xenograft+ADMSC group, serum levels of vascular endothelial growth factor and IL-10 were elevated and tissue deposition of IgM and IgG was low. The significant immunosuppressive effects of ADMSCs illustrate their potential use as immunosuppressive agents for xenogeneic biomaterial-based implants.


Assuntos
Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Ratos , Humanos , Animais , Suínos , Ratos Endogâmicos BN , Materiais Biocompatíveis , Brônquios , Tecido Adiposo
14.
Cell Transplant ; 32: 9636897231207177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37950374

RESUMO

Cell therapy using mesenchymal stromal cells (MSCs) is being studied for its immunosuppressive effects. In organ transplantation, the amount of MSCs that accumulate in transplanted organs and other organs may differ depending on administration timing, which may impact their immunosuppressive effects. In vitro, adipose-derived mesenchymal stem cells (ADMSCs) suppress lymphocyte activation under cell-to-cell contact conditions. However, in vivo, it is controversial whether ADMSCs are more effective in accumulating in transplanted organs or in secondary lymphoid organs. Herein, we aimed to investigate whether the timing of ADMSC administration affects its immunosuppression ability in a rat lung transplantation model. In the transplantation study, rats were intramuscularly administered half the usual dose of tacrolimus (0.5 mg/kg) every 24 h after lung transplantation. ADMSCs (1 × 106) were administered via the jugular vein before (PreTx) or after (PostTx) transplantation. Cell tracking using quantum dots was performed. ADMSCs accumulated predominantly in the lung and liver; fewer ADMSCs were distributed in the grafted lung in the PreTx group than in the PostTx group. The rejection rate was remarkably low in the ADMSC-administered groups, particularly in the PostTx group. Serum tumor necrosis factor-α (TNF-α), interferon-γ, and interleukin (IL)-6 levels showed a greater tendency to decrease in the PreTx group than in the PostTx group. The proportion of regulatory T cells in the grafted lung 10 days after transplantation was higher in the PostTx group than in the PreTx group. PostTx administration suppresses rejection better than PreTx administration, possibly due to regulatory T cell induction by ADMSCs accumulated in the transplanted lungs, suggesting a mechanism different from that in heart or kidney transplantation that PreTx administration is more effective than PostTx administration. These results could help establish cell therapy using MSCs in lung transplantation.


Assuntos
Transplante de Pulmão , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Animais , Transplante de Células-Tronco Mesenquimais/métodos , Pulmão , Tacrolimo/farmacologia , Tecido Adiposo
15.
Transplant Proc ; 54(7): 1998-2007, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36041932

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) are beginning to be proven as immunosuppressant in the field of organ transplantation. However, the effects of MSC origin (donor or recipient) on immunosuppression are not clear. Hence, we investigated the effects of recipient and donor adipose-derived MSCs (ADMSCs) on immunosuppression in a rat lung transplantation model. METHODS: Subjects were divided into no treatment, tacrolimus administration, recipient ADMSC administration, donor ADMSC administration, and mixed donor and recipient ADMSC administration groups. ADMSC-administered groups were also treated with tacrolimus. Histologic study, immunofluorescence, immunohistochemistry, enzyme-linked immunosorbent assay, and polymerase chain reaction were used for various analyses. RESULTS: Fluorescently labeled ADMSCs were predominant in the grafted donor lung, but not in the recipient lung, on day 5. On day 7, the pathologic rejection grades of the grafted donor lung were significantly lower in the ADMSC-administered groups (P < .05) and did not differ among these groups. Although serum hepatocyte growth factor and vascular endothelial growth factor levels did not differ among the groups, interleukin 10 level was slightly higher in the ADMSC-administered groups. The numbers of infiltrating regulatory T cells in the grafted lung were significantly higher in the ADMSC-administered groups (P < .05) but did not differ with cell origin. Transcriptional analysis suggested interleukin 6 suppression to be the main overlapping immunosuppressive mechanism, regardless of origin. Therefore, a donor or recipient origin may not influence the immunosuppressive efficacy of ADMSCs in our rat lung transplantation model. CONCLUSIONS: Collectively, the results indicate that allogenic ADMSCs, regardless of their origin, may exert similar immunosuppressive effects in clinical organ transplantation.


Assuntos
Transplante de Pulmão , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Animais , Transplante de Células-Tronco Mesenquimais/métodos , Tacrolimo/farmacologia , Tecido Adiposo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Imunossupressores/farmacologia
16.
Materials (Basel) ; 14(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34832496

RESUMO

We have developed nanoballs, a biocompatible self-assembly nano-vector based on electrostatic interactions that arrange anionic macromolecules to polymeric nanomaterials to create nucleic acid carriers. Nanoballs exhibit low cytotoxicity and high transfection efficiently in vivo. This study investigated whether a gene-activated matrix (GAM) composed of nanoballs containing plasmid (p) DNAs encoding bone morphogenetic protein 4 (pBMP4) could promote bone augmentation with a small amount of DNA compared to that composed of naked pDNAs. We prepared nanoballs (BMP4-nanoballs) constructed with pBMP4 and dendrigraft poly-L-lysine (DGL, a cationic polymer) coated by γ-polyglutamic acid (γ-PGA; an anionic polymer), and determined their biological functions in vitro and in vivo. Next, GAMs were manufactured by mixing nanoballs with 2% atelocollagen and ß-tricalcium phosphate (ß-TCP) granules and lyophilizing them for bone augmentation. The GAMs were then transplanted to rat cranial bone surfaces under the periosteum. From the initial stage, infiltrated macrophages and mesenchymal progenitor cells took up the nanoballs, and their anti-inflammatory and osteoblastic differentiations were promoted over time. Subsequently, bone augmentation was clearly recognized for up to 8 weeks in transplanted GAMs containing BMP4-nanoballs. Notably, only 1 µg of BMP4-nanoballs induced a sufficient volume of new bone, while 1000 µg of naked pDNAs were required to induce the same level of bone augmentation. These data suggest that applying this anionic vector to the appropriate matrices can facilitate GAM-based bone engineering.

17.
Regen Biomater ; 8(2): rbaa060, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33738113

RESUMO

Gene-activated matrix (GAM) has a potential usefulness in bone engineering as an alternate strategy for the lasting release of osteogenic proteins but efficient methods to generate non-viral GAM remain to be established. In this study, we investigated whether an atelocollagen-based GAM containing naked-plasmid (p) DNAs encoding microRNA (miR) 20a, which may promote osteogenesis in vivo via multiple pathways associated with the osteogenic differentiation of mesenchymal stem/progenitor cells (MSCs), facilitates rat cranial bone augmentation. First, we confirmed the osteoblastic differentiation functions of generated pDNA encoding miR20a (pmiR20a) in vitro, and its transfection regulated the expression of several of target genes, such as Bambi1 and PPARγ, in rat bone marrow MSCs and induced the increased expression of BMP4. Then, when GAMs fabricated by mixing 100 µl of 2% bovine atelocollagen, 20 mg ß-TCP granules and 0.5 mg (3.3 µg/µl) AcGFP plasmid-vectors encoding miR20a were transplanted to rat cranial bone surface, the promoted vertical bone augmentation was clearly recognized up to 8 weeks after transplantation, as were upregulation of VEGFs and BMP4 expressions at the early stages of transplantation. Thus, GAM-based miR delivery may provide an alternative non-viral approach by improving transgene efficacy via a small sequence that can regulate the multiple pathways.

18.
Pharmaceutics ; 13(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34452225

RESUMO

With the emergence of coronavirus disease-2019, researchers have gained interest in the therapeutic efficacy of mesenchymal stem/stromal cells (MSCs) in acute respiratory distress syndrome; however, the mechanisms of the therapeutic effects of MSCs are unclear. We have previously reported that adipose-derived MSCs (AD-MSCs) strengthen the barrier function of the pulmonary vessels in scaffold-based bioengineered rat lungs. In this study, we evaluated whether AD-MSCs could enhance the intercellular barrier function of lung epithelial cells in vitro using a transwell coculture system. Transepithelial electrical resistance (TEER) measurements revealed that the peak TEER value was significantly higher in the AD-MSC coculture group than in the AD-MSC non-coculture group. Similarly, the permeability coefficient was significantly decreased in the AD-MSC coculture group compared to that in the AD-MSC non-coculture group. Immunostaining of insert membranes showed that zonula occuldens-1 expression was significantly high at cell junctions in the AD-MSC coculture group. Moreover, cell junction-related gene profiling showed that the expression of some claudin genes, including claudin-4, was upregulated in the AD-MSC coculture group. Taken together, these results showed that AD-MSCs enhanced the barrier function between lung epithelial cells, suggesting that both direct adhesion and indirect paracrine effects strengthened the barrier function of lung alveolar epithelium in vitro.

19.
Medicine (Baltimore) ; 99(26): e20788, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32590759

RESUMO

BACKGROUND: Treatment for most patients with head and neck cancers includes ionizing radiation with or without chemotherapy. This treatment causes irreversible damage to salivary glands in the irradiation field accompanied by a loss of fluid-secreting acinar cells and a considerable decrease of saliva secretion. There is currently no adequate conventional treatment for this condition. In recent years, we developed an effective culture method to enhance the anti-inflammatory and vasculogenic phenotypes of peripheral blood mononuclear cells (PBMNCs), and such effectively conditioned PBMNC (E-MNC) therapy has shown promising improvements to the function of radiation-injured salivary glands in preclinical studies. However, the safety and effect of E-NMC therapy have yet assessed in human. The objective of this ongoing first-in-man study is to assess the safety, tolerability, and in part the efficacy of E-MNC therapy for treating radiation-induced xerostomia. METHODS/DESIGN: This phase 1 first-in-man study is an open-label, single-center, two-step dose escalation study. A total of 6 patients, who had no recurrence of head and neck cancer over 5 years following radiation therapy and suffered from radiation-induced xerostomia, will receive a transplantation of E-NMCs derived from autologous PBMNCs to a submandibular gland. The duration of the intervention will be 1 year. To analyze the recovery of salivary secretion, a gum test will be performed. To analyze the recovery of atrophic salivary glands, computed tomography (CT), and magnetic resonance imaging (MRI) of salivary glands will be conducted. The primary endpoint is the safety of the protocol. The secondary endpoints are the changes from baseline in whole saliva secretion and salivary gland atrophy. DISCUSSION: This will be the first clinical study of regenerative therapy using E-MNCs for patients with severe radiation-induced xerostomia. The results of this study are expected to contribute to developing the low-invasive cell-based therapy for radiation-induced xerostomia. TRIAL REGISTRATION: This study was registered with the Japan Registry of Clinical Trials (http://jrct.niph.go.jp) as jRCTb070190057.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Leucócitos Mononucleares/transplante , Lesões por Radiação , Glândulas Salivares , Xerostomia , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imageamento por Ressonância Magnética/métodos , Lesões por Radiação/diagnóstico , Lesões por Radiação/etiologia , Lesões por Radiação/fisiopatologia , Lesões por Radiação/terapia , Projetos de Pesquisa , Glândulas Salivares/diagnóstico por imagem , Glândulas Salivares/patologia , Glândulas Salivares/fisiopatologia , Glândulas Salivares/efeitos da radiação , Tomografia Computadorizada por Raios X/métodos , Transplante Autólogo/métodos , Resultado do Tratamento , Xerostomia/diagnóstico , Xerostomia/etiologia , Xerostomia/fisiopatologia , Xerostomia/terapia
20.
Stem Cells Int ; 2019: 4214281, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781240

RESUMO

Mesenchymal stem/stromal cells (MSCs) are known to be useful for treating local bone diseases. However, it is not known if MSCs are effective for treating systemic bone diseases, as the risk for mortality following intravenous MSC administration has hindered research progress. In this study, we compared the safety and efficacy of intra-bone marrow and intravenous administration of MSCs for the treatment of ovariectomy- (OVX-) induced osteoporosis. Cells capable of forming bone were isolated from the murine compact bones and expanded in culture. Relatively pure MSCs possessing increased potential for cell proliferation, osteogenic differentiation, and inhibition of osteoclastogenesis were obtained by magnetic-activated cell sorting with the anti-Sca-1 antibody. Sca-1-sorted MSCs were administered to OVX mice, which were sacrificed 1 month later. We observed that 22% of the mice died after intravenous administration, whereas none of the mice died after intra-bone marrow administration. With respect to efficacy, intravenous administration improved bone mineral density (BMD) by increasing bone mineral content without affecting bone thickness, whereas intra-bone marrow administration improved BMD by increasing both bone mineral content and bone thickness. These results indicate that intra-bone marrow administration of pure MSCs is a safer and more effective approach for treating osteoporosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA