Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant J ; 90(3): 478-490, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28161893

RESUMO

Photosystem I (PSI) is the most efficient bioenergetic nanomachine in nature and one of the largest membrane protein complexes known. It is composed of 18 protein subunits that bind more than 200 co-factors and prosthetic groups. While the structure and function of PSI have been studied in great detail, very little is known about the PSI assembly process. In this work, we have characterized a PSI assembly intermediate in tobacco plants, which we named PSI*. We found PSI* to contain only a specific subset of the core subunits of PSI. PSI* is particularly abundant in young leaves where active thylakoid biogenesis takes place. Moreover, PSI* was found to overaccumulate in PsaF-deficient mutant plants, and we show that re-initiation of PsaF synthesis promotes the maturation of PSI* into PSI. The attachment of antenna proteins to PSI also requires the transition from PSI* to mature PSI. Our data could provide a biochemical entry point into the challenging investigation of PSI biogenesis and allow us to improve the model for the assembly pathway of PSI in thylakoid membranes of vascular plants.


Assuntos
Nicotiana/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/genética , Proteínas de Plantas/genética , Tilacoides/metabolismo , Nicotiana/genética
2.
Plant Physiol ; 171(2): 1333-43, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27208291

RESUMO

Thylakoid membrane-bound FtsH proteases have a well-characterized role in degradation of the photosystem II (PSII) reaction center protein D1 upon repair of photodamaged PSII. Here, we show that the Arabidopsis (Arabidopsis thaliana) var1 and var2 mutants, devoid of the FtsH5 and FtsH2 proteins, respectively, are capable of normal D1 protein turnover under moderate growth light intensity. Instead, they both demonstrate a significant scarcity of PSI complexes. It is further shown that the reduced level of PSI does not result from accelerated photodamage of the PSI centers in var1 or var2 under moderate growth light intensity. On the contrary, radiolabeling experiments revealed impaired synthesis of the PsaA/B reaction center proteins of PSI, which was accompanied by the accumulation of PSI-specific assembly factors. psaA/B transcript accumulation and translation initiation, however, occurred in var1 and var2 mutants as in wild-type Arabidopsis, suggesting problems in later stages of PsaA/B protein expression in the two var mutants. Presumably, the thylakoid membrane-bound FtsH5 and FtsH2 have dual functions in the maintenance of photosynthetic complexes. In addition to their function as a protease in the degradation of the photodamaged D1 protein, they also are required, either directly or indirectly, for early assembly of the PSI complexes.


Assuntos
Proteases Dependentes de ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Metaloproteases/metabolismo , Complexo de Proteína do Fotossistema I/biossíntese , Tilacoides/metabolismo , Proteases Dependentes de ATP/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Transporte de Elétrons/efeitos da radiação , Luz , Proteínas de Membrana/genética , Metaloproteases/genética , Mutação , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteólise/efeitos da radiação
3.
Biochim Biophys Acta ; 1847(9): 900-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25615587

RESUMO

Photosystem (PS) II is a multisubunit thylakoid membrane pigment-protein complex responsible for light-driven oxidation of water and reduction of plastoquinone. Currently more than 40 proteins are known to associate with PSII, either stably or transiently. The inherent feature of the PSII complex is its vulnerability in light, with the damage mainly targeted to one of its core proteins, the D1 protein. The repair of the damaged D1 protein, i.e. the repair cycle of PSII, initiates in the grana stacks where the damage generally takes place, but subsequently continues in non-appressed thylakoid domains, where many steps are common for both the repair and de novo assembly of PSII. The sequence of the (re)assembly steps of genuine PSII subunits is relatively well-characterized in higher plants. A number of novel findings have shed light into the regulation mechanisms of lateral migration of PSII subcomplexes and the repair as well as the (re)assembly of the complex. Besides the utmost importance of the PSII repair cycle for the maintenance of PSII functionality, recent research has pointed out that the maintenance of PSI is closely dependent on regulation of the PSII repair cycle. This review focuses on the current knowledge of regulation of the repair cycle of PSII in higher plant chloroplasts. Particular emphasis is paid on sequential assembly steps of PSII and the function of the number of PSII auxiliary proteins involved both in the biogenesis and repair of PSII. This article is part of a Special Issue entitled: Chloroplast Biogenesis.


Assuntos
Cloroplastos/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia , Fosforilação , Complexo de Proteína do Fotossistema II/química , Transporte Proteico
4.
Plant J ; 84(2): 360-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26332430

RESUMO

Thylakoid energy metabolism is crucial for plant growth, development and acclimation. Non-appressed thylakoids harbor several high molecular mass pigment-protein megacomplexes that have flexible compositions depending upon the environmental cues. This composition is important for dynamic energy balancing in photosystems (PS) I and II. We analysed the megacomplexes of Arabidopsis wild type (WT) plants and of several thylakoid regulatory mutants. The stn7 mutant, which is defective in phosphorylation of the light-harvesting complex (LHC) II, possessed a megacomplex composition that was strikingly different from that of the WT. Of the nine megacomplexes in total for the non-appressed thylakoids, the largest megacomplex in particular was less abundant in the stn7 mutant under standard growth conditions. This megacomplex contains both PSI and PSII and was recently shown to allow energy spillover between PSII and PSI (Nat. Commun., 6, 2015, 6675). The dynamics of the megacomplex composition was addressed by exposing plants to different light conditions prior to thylakoid isolation. The megacomplex pattern in the WT was highly dynamic. Under darkness or far red light it showed low levels of LHCII phosphorylation and resembled the stn7 pattern; under low light, which triggers LHCII phosphorylation, it resembled that of the tap38/pph1 phosphatase mutant. In contrast, solubilization of the entire thylakoid network with dodecyl maltoside, which efficiently solubilizes pigment-protein complexes from all thylakoid compartments, revealed that the pigment-protein composition remained stable despite the changing light conditions or mutations that affected LHCII (de)phosphorylation. We conclude that the composition of pigment-protein megacomplexes specifically in non-appressed thylakoids undergoes redox-dependent changes, thus facilitating maintenance of the excitation balance between the two photosystems upon changes in light conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Tilacoides/metabolismo , Aclimatação/efeitos da radiação , Arabidopsis/efeitos da radiação , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/efeitos da radiação
5.
Biochim Biophys Acta ; 1837(9): 1463-71, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24296034

RESUMO

In higher plants, thylakoid membrane protein complexes show lateral heterogeneity in their distribution: photosystem (PS) II complexes are mostly located in grana stacks, whereas PSI and adenosine triphosphate (ATP) synthase are mostly found in the stroma-exposed thylakoids. However, recent research has revealed strong dynamics in distribution of photosystems and their light harvesting antenna along the thylakoid membrane. Here, the dark-adapted spinach (Spinacia oleracea L.) thylakoid network was mechanically fragmented and the composition of distinct PSII-related proteins in various thylakoid subdomains was analyzed in order to get more insights into the composition and localization of various PSII subcomplexes and auxiliary proteins during the PSII repair cycle. Most of the PSII subunits followed rather equal distribution with roughly 70% of the proteins located collectively in the grana thylakoids and grana margins; however, the low molecular mass subunits PsbW and PsbX as well as the PsbS proteins were found to be more exclusively located in grana thylakoids. The auxiliary proteins assisting in repair cycle of PSII were mostly located in stroma-exposed thylakoids, with the exception of THYLAKOID LUMEN PROTEIN OF 18.3 (TLP18.3), which was more evenly distributed between the grana and stroma thylakoids. The TL29 protein was present exclusively in grana thylakoids. Intriguingly, PROTON GRADIENT REGULATION5 (PGR5) was found to be distributed quite evenly between grana and stroma thylakoids, whereas PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) was highly enriched in the stroma thylakoids and practically missing from the grana cores. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.


Assuntos
Complexo de Proteína do Fotossistema II/química , Proteínas de Plantas/análise , Spinacia oleracea/química , Tilacoides/química , Adaptação Fisiológica , Escuridão
6.
Plant Cell ; 24(7): 2934-48, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22822205

RESUMO

In nature, plants are challenged by constantly changing light conditions. To reveal the molecular mechanisms behind acclimation to sometimes drastic and frequent changes in light intensity, we grew Arabidopsis thaliana under fluctuating light conditions, in which the low light periods were repeatedly interrupted with high light peaks. Such conditions had only marginal effect on photosystem II but induced damage to photosystem I (PSI), the damage being most severe during the early developmental stages. We showed that PROTON GRADIENT REGULATION5 (PGR5)-dependent regulation of electron transfer and proton motive force is crucial for protection of PSI against photodamage, which occurred particularly during the high light phases of fluctuating light cycles. Contrary to PGR5, the NAD(P)H dehydrogenase complex, which mediates cyclic electron flow around PSI, did not contribute to acclimation of the photosynthetic apparatus, particularly PSI, to rapidly changing light intensities. Likewise, the Arabidopsis pgr5 mutant exhibited a significantly higher mortality rate compared with the wild type under outdoor field conditions. This shows not only that regulation of PSI under natural growth conditions is crucial but also the importance of PGR5 in PSI protection.


Assuntos
Aclimatação/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Luz , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema I/efeitos da radiação , Aclimatação/efeitos da radiação , Antioxidantes/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Respiração Celular/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Modelos Moleculares , Mutação , Oxirredução/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Fenótipo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema II/efeitos da radiação , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Força Próton-Motriz/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação
7.
Biochem J ; 439(2): 207-14, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21707535

RESUMO

Gel-based analysis of thylakoid membrane protein complexes represents a valuable tool to monitor the dynamics of the photosynthetic machinery. Native-PAGE preserves the components and often also the conformation of the protein complexes, thus enabling the analysis of their subunit composition. Nevertheless, the literature and practical experimentation in the field sometimes raise confusion owing to a great variety of native-PAGE and thylakoid-solubilization systems. In the present paper, we describe optimized methods for separation of higher plant thylakoid membrane protein complexes by native-PAGE addressing particularly: (i) the use of detergent; (ii) the use of solubilization buffer; and (iii) the gel electrophoresis method. Special attention is paid to separation of high-molecular-mass thylakoid membrane super- and mega-complexes from Arabidopsis thaliana leaves. Several novel super- and mega-complexes including PS (photosystem) I, PSII and LHCs (light-harvesting complexes) in various combinations are reported.


Assuntos
Proteínas de Arabidopsis/isolamento & purificação , Eletroforese em Gel de Poliacrilamida/métodos , Tilacoides/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosforilação , Solubilidade
8.
Elife ; 82019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30767893

RESUMO

Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus. ROS alter the abundance, thiol redox state and oligomerization of the RCD1 protein in vivo, providing feedback control on its function. RCD1-dependent regulation is linked to chloroplast signaling by 3'-phosphoadenosine 5'-phosphate (PAP). Thus, RCD1 integrates organellar signaling from chloroplasts and mitochondria to establish transcriptional control over the metabolic processes in both organelles.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Cloroplastos/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Regulação da Expressão Gênica de Plantas/genética , Mitocôndrias/genética , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Estresse Fisiológico/genética
9.
Front Plant Sci ; 7: 405, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27064270

RESUMO

Chloroplasts play an important role in the cellular sensing of abiotic and biotic stress. Signals originating from photosynthetic light reactions, in the form of redox and pH changes, accumulation of reactive oxygen and electrophile species or stromal metabolites are of key importance in chloroplast retrograde signaling. These signals initiate plant acclimation responses to both abiotic and biotic stresses. To reveal the molecular responses activated by rapid fluctuations in growth light intensity, gene expression analysis was performed with Arabidopsis thaliana wild type and the tlp18.3 mutant plants, the latter showing a stunted growth phenotype under fluctuating light conditions (Biochem. J, 406, 415-425). Expression pattern of genes encoding components of the photosynthetic electron transfer chain did not differ between fluctuating and constant light conditions, neither in wild type nor in tlp18.3 plants, and the composition of the thylakoid membrane protein complexes likewise remained unchanged. Nevertheless, the fluctuating light conditions repressed in wild-type plants a broad spectrum of genes involved in immune responses, which likely resulted from shade-avoidance responses and their intermixing with hormonal signaling. On the contrary, in the tlp18.3 mutant plants there was an imperfect repression of defense-related transcripts upon growth under fluctuating light, possibly by signals originating from minor malfunction of the photosystem II (PSII) repair cycle, which directly or indirectly modulated the transcript abundances of genes related to light perception via phytochromes. Consequently, a strong allocation of resources to defense reactions in the tlp18.3 mutant plants presumably results in the stunted growth phenotype under fluctuating light.

10.
Front Plant Sci ; 4: 434, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24198822

RESUMO

It has been known for a long time that the thylakoid lumen provides the environment for oxygen evolution, plastocyanin-mediated electron transfer, and photoprotection. More recently lumenal proteins have been revealed to play roles in numerous processes, most often linked with regulating thylakoid biogenesis and the activity and turnover of photosynthetic protein complexes, especially the photosystem II and NAD(P)H dehydrogenase-like complexes. Still, the functions of the majority of lumenal proteins in Arabidopsis thaliana are unknown. Interestingly, while the thylakoid lumen proteome of at least 80 proteins contains several large protein families, individual members of many protein families have highly divergent roles. This is indicative of evolutionary pressure leading to neofunctionalization of lumenal proteins, emphasizing the important role of the thylakoid lumen for photosynthetic electron transfer and ultimately for plant fitness. Furthermore, the involvement of anterograde and retrograde signaling networks that regulate the expression and activity of lumen proteins is increasingly pertinent. Recent studies have also highlighted the importance of thiol/disulfide modulation in controlling the functions of many lumenal proteins and photosynthetic regulation pathways.

11.
Plant Signal Behav ; 8(1): e22741, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23221748

RESUMO

In a plant's natural environment, the intensity of light can change rapidly due to sunflecks, cloudiness and intermittent shading. Fluctuations between high and low illumination phases expose the photosynthetic machinery to rapidly changing signals that can be overlapping or contradictory, and accordingly plants have developed astute acclimation strategies to maintain optimal photosynthetic performance in these conditions. Continuous exposure to high light induces an array of protective mechanisms at anatomical, chemical and molecular levels, but when high light phases are short, such as under fluctuating light conditions, the protective strategies that afford protection to constant high light are not employed by plants. One mechanism that is engaged under both constant and fluctuating high light is the photosynthetic control of the Cyt b 6f complex, which prevents hyper-reduction of the electron transfer chain in order to protect PSI from photodamage. The PGR5 protein was recently shown to play an indispensable role in this protective mechanism. This review revisits the findings of earlier studies into photosynthetic control and places PGR5 within the broader context of photoprotection and light acclimation strategies.


Assuntos
Aclimatação , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo Citocromos b6f/metabolismo , Luz , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Arabidopsis/fisiologia , Respiração Celular , Transporte de Elétrons
12.
Twin Res ; 6(4): 334-43, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14511443

RESUMO

We evaluated dominance-submissiveness between co-twins and its relationship to mental health in a cohort study of 419 twins followed from pregnancy to 22-30 years of age. Dominance-submissiveness between co-twins was assessed from three separate perspectives: physical dominance, psychological dominance, and verbal dominance. Depressive, nervous, and psychosomatic symptoms were analyzed in different twin groups. In the physical domain, males were more commonly dominant than females at school age and in adulthood. Before and at school age, girls were more dominant than boys in the psychological and verbal domains, as well as in total dominance. These differences disappeared in adulthood, and 81% of adult twins felt themselves equal to their co-twin in total dominance. Submissiveness in the psychological domain seemed to be associated with increased depressiveness, nervous complaints and psychosomatic symptoms in males of male-female twin pairs. Verbally submissive males in same-sex twin pairs had more depression and psychosomatic symptoms. Among females of same-sex twin pairs, submissiveness in the psychological domain was most clearly associated with depressive symptoms, whereas psychological or verbal dominance-submissiveness among females from male-female twin pairs was not associated with symptoms. Psychologically dominant males and females of same-sex twin pairs expressed greater nervousness than did their co-twins. We conclude that being submissive, especially in the psychological domain, to a female twin partner seems to be stressful, whereas it is easier, especially for females, to be submissive to a male twin partner.


Assuntos
Transtornos Mentais , Saúde Mental , Relações entre Irmãos , Gêmeos/psicologia , Adulto , Estudos de Coortes , Feminino , Humanos , Masculino , Transtornos Mentais/genética , Transtornos Mentais/psicologia , Estudos Retrospectivos , Caracteres Sexuais , Predomínio Social , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA