Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Biomacromolecules ; 25(3): 1810-1824, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38360581

RESUMO

Polyurethanes (PUs) have adjustable mechanical properties, making them suitable for a wide range of applications, including in the biomedical field. Historically, these PUs have been synthesized from isocyanates, which are toxic compounds to handle. This has encouraged the search for safer and more environmentally friendly synthetic routes, leading today to the production of nonisocyanate polyurethanes (NIPUs). Among these NIPUs, polyhydroxyurethanes (PHUs) bear additional hydroxyl groups, which are particularly attractive for derivatizing and adjusting their physicochemical properties. In this paper, polyether-based NIPU elastomers with variable stiffness are designed by functionalizing the hydroxyl groups of a poly(propylene glycol)-PHU by a cyclic carbonate carrying a pendant unsaturation, enabling them to be post-photo-cross-linked with polythiols (thiol-ene). Elastomers with remarkable mechanical properties whose stiffness can be adjusted are obtained. Thanks to the unique viscous properties of these PHU derivatives and their short gel times observed by rheology experiments, formulations for light-based three-dimensional (3D) printing have been developed. Objects were 3D-printed by digital light processing with a resolution down to the micrometer scale, demonstrating their ability to target various designs of prime importance for personalized medicine. In vitro biocompatibility tests have confirmed the noncytotoxicity of these materials for human fibroblasts. In vitro hemocompatibility tests have revealed that they do not induce hemolytic effects, they do not increase platelet adhesion, nor activate coagulation, demonstrating their potential for future applications in the cardiovascular field.


Assuntos
Elastômeros , Poliuretanos , Humanos , Poliuretanos/farmacologia , Poliuretanos/química , Elastômeros/química , Isocianatos/química , Próteses e Implantes , Supuração
2.
Biomacromolecules ; 24(10): 4375-4384, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36113039

RESUMO

In this work, isocyanate-free formulations for poly(propylene glycol) polyurethane elastomers are studied. These formulations are based on poly(propylene glycol) end-capped by CO2-sourced cyclic carbonate (bisCC PPG) macromonomers able to react with amines leading to poly(hydroxyurethane)s. In order to obtain covalent networks, two curing approaches are studied. First, the direct thermally activated cross-linking of bisCC PPG with a mixture of various aliphatic or aromatic diamines and a triamine is investigated, and in particular the nature of the diamine on the mechanical properties. In the second approach, UV-activated formulations are developed by reacting bisCC PPG with allylamine followed by the addition of a trithiol by photoactivated thiol-ene reaction. The swelling tests show that both systems provide highly cross-linked polymer networks and complementary characterizations highlighted excellent mechanical properties. Thanks to the fast curing and adapted viscosity of the developed photoactive formulation, the latter was found suitable for use as a photoresin for 3D printing as demonstrated by printing a vaginal ring by a nozzle-based photoprinter.


Assuntos
Elastômeros , Propilenoglicol , Polímeros , Poliuretanos , Isocianatos
3.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802882

RESUMO

The curcumin degradation represents a significant limitation for its applications. The stability of free curcumin (FC) and immobilized curcumin in complex particles (ComPs) based on different polysaccharides was studied under the action of several factors. Ultraviolet-visible (UV-VIS) and Fourier-transform infrared (FTIR) spectroscopy proved the FC photodegradation and its role as a metal chelator: 82% of FC and between 26% and 39.79% of curcumin within the ComPs degraded after exposure for 28 days to natural light. The degradation half-life (t1/2) decreases for FC when the pH increases, from 6.8 h at pH = 3 to 2.1 h at pH = 9. For curcumin extracted from ComPs, t1/2 was constant (between 10 and 13 h) and depended on the sample's composition. The total phenol (TPC) and total flavonoids (TFC) content values increased by 16% and 13%, respectively, for FC exposed to ultraviolet light at λ = 365 nm (UVA), whereas no significant change was observed for immobilized curcumin. Antioxidant activity expressed by IC50 (µmoles/mL) for FC exposed to UVA decreased by 29%, but curcumin within ComPs was not affected by the UVA. The bovine serum albumin (BSA) adsorption efficiency on the ComPs surface depends on the pH value and the cross-linking degree. ComPs have a protective role for the immobilized curcumin.


Assuntos
Curcumina/farmacologia , Polissacarídeos/química , Substâncias Protetoras/farmacologia , Adsorção , Animais , Antioxidantes/análise , Compostos de Bifenilo/química , Soluções Tampão , Bovinos , Curcumina/química , Curcumina/efeitos da radiação , Flavonoides/análise , Sequestradores de Radicais Livres/química , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Íons , Metais/química , Fenóis/análise , Picratos/química , Soroalbumina Bovina/química , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Raios Ultravioleta
4.
Molecules ; 26(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804768

RESUMO

Poly(ethylene glycol)-b-polyphosphoester (PEG-b-PPE) block copolymer nanoparticles are promising carriers for poorly water soluble drugs. To enhance the drug loading capacity and efficiency of such micelles, a strategy was investigated for increasing the lipophilicity of the PPE block of these PEG-b-PPE amphiphilic copolymers. A PEG-b-PPE copolymer bearing pendant vinyl groups along the PPE block was synthesized and then modified by thiol-ene click reaction with thiols bearing either a long linear alkyl chain (dodecyl) or a tocopherol moiety. Ketoconazole was used as model for hydrophobic drugs. Comparison of the drug loading with PEG-b-PPE bearing shorter pendant groups is reported evidencing the key role of the structure of the pendant group on the PPE backbone. Finally, a first evidence of the biocompatibility of these novel PEG-b-PPE copolymers was achieved by performing cytotoxicity tests. The PEG-b-PPE derived by tocopherol was evidenced as particularly promising as delivery system of poorly water-soluble drugs.


Assuntos
Portadores de Fármacos , Desenho de Fármacos , Micelas , Poliésteres , Polietilenoglicóis , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cetoconazol/química , Cetoconazol/uso terapêutico , Poliésteres/química , Poliésteres/uso terapêutico , Polietilenoglicóis/química , Polietilenoglicóis/uso terapêutico
5.
Biomacromolecules ; 21(2): 349-355, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31687811

RESUMO

In the recent decades, biodegradable and biocompatible polyphosphoesters (PPEs) have gained wide attention in the biomedical field as relevant substitutes for conventional aliphatic polyesters. These amorphous materials of low glass transition temperature offer promise for the design of soft scaffolds for tissue engineering. Advantageously, the easy variation of the nature of the lateral pendant groups of PPEs allows the insertion of pendent unsaturations valuable for their further cross-linking. In addition, varying the length of the pendent alkyl chains allows tuning their hydrophilicity. The present work aims at synthesizing PPE networks of well-defined hydrophilicity and mechanical properties. More precisely, we aimed at preparing degradable materials exhibiting identical hydrophilicity but different mechanical properties and vice versa. For that purpose, PPE copolymers were synthesized by ring-opening copolymerization of cyclic phosphate monomers bearing different pendent groups (e.g., methyl, butenyl, and butyl). After UV irradiation, a stable and well-defined cross-linked material is obtained with the mechanical property of the corresponding polymer films controlled by the composition of the starting PPE copolymer. The results demonstrate that cross-linking density could be correlated with the mechanical properties, swelling behavior, and degradation rate of the polymers network. The polymers were compatible to human skin fibroblast cells and did not exhibit significant cytotoxicity up to 0.5 mg mL-1. In addition, degradation products appeared nontoxic to skin fibroblast cells and showed their potential as promising scaffolds for tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Polímeros/química , Alicerces Teciduais/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/toxicidade , Células Cultivadas , Ésteres/química , Fibroblastos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Polimerização , Polímeros/síntese química , Polímeros/metabolismo , Polímeros/toxicidade , Reologia , Engenharia Tecidual/métodos , Raios Ultravioleta
6.
Soft Matter ; 16(45): 10320-10325, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33237110

RESUMO

Capillarity driven self-assembly is a way to create spontaneous structures along liquid interfaces in between bottom-up and top-down fabrication methods. Based on multipolar capillary interactions between elementary floating object, simple to complex structures can been achieved by designing objects with specific 3D shapes. We show herein that a switchable self-assembled structure can be obtained with a shape memory polymer. At a defined temperature of the liquid, the 3D shape of each elementary floating object changes, modifying the capillary interactions thus forcing the stable structure to disassemble and to form a new arrangement. Based on simulations and experiments, we study how this cooperative behavior induces metastable complex configurations.

7.
Chem Soc Rev ; 48(16): 4466-4514, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31276137

RESUMO

Carbon dioxide offers an accessible, cheap and renewable carbon feedstock for synthesis. Current interest in the area of carbon dioxide valorisation aims at new, emerging technologies that are able to provide new opportunities to turn a waste into value. Polymers are among the most widely produced chemicals in the world greatly affecting the quality of life. However, there are growing concerns about the lack of reuse of the majority of the consumer plastics and their after-life disposal resulting in an increasing demand for sustainable alternatives. New monomers and polymers that can address these issues are therefore warranted, and merging polymer synthesis with the recycling of carbon dioxide offers a tangible route to transition towards a circular economy. Here, an overview of the most relevant and recent approaches to CO2-based monomers and polymers are highlighted with particular emphasis on the transformation routes used and their involved manifolds.

8.
Angew Chem Int Ed Engl ; 59(39): 17033-17041, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32521118

RESUMO

Polyurethane (PU) foams are indisputably daily essential materials found in many applications, notably for comfort (for example, matrasses) or energy saving (for example, thermal insulation). Today, greener routes for their production are intensively searched for to avoid the use of toxic isocyanates. An easily scalable process for the simple construction of self-blown isocyanate-free PU foams by exploiting the organocatalyzed chemo- and regioselective additions of amines and thiols to easily accessible cyclic carbonates is described. These reactions are first validated on model compounds and rationalized by DFT calculations. Various foams are then prepared and characterized in terms of morphology and mechanical properties, and the scope of the process is illustrated by modulating the composition of the reactive formulation. With impressive diversity and accessibility of the main components of the formulations, this new robust and solvent-free process could open avenues for construction of more sustainable PU foams, and offers the first realistic alternative to the traditional isocyanate route.

9.
Methods ; 144: 125-133, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29601857

RESUMO

Ion Mobility (IM) coupled to Mass Spectrometry (MS) has been used for several decades, bringing a fast separation dimension to the MS detection. IM-MS is a convenient tool for structural elucidation. The folding of macromolecules is often assessed with the support of computational chemistry. However, this strategy is strongly dependent on computational initial guesses. Here, we propose the analysis of the Collision Cross-Section (CCS) trends of synthetic homopolymers based on a fitting method which does not rely on computational chemistry a prioris of the three-dimensional structures. The CCS trends were evaluated as a function of the polymer chain length and the charge state. This method is also applicable to mobility trends. It leads to two parameters containing all information available through IM(-MS) measurements. One parameter can be interpreted as an apparent density. The second parameter is related to the shape of the ions and leads us to introduce the concept of trends with constant apparent density. Based on the two fitting parameters, a method for IM trend predictions is elaborated. Experimental deviations from the predictions facilitate detecting structural rearrangements and three-dimensional structure differences of the cationized polymer ions. This leads for instance to an easy identification and prediction of the presence of different polymer topologies in complex polymer mixtures. The classification of predicted trends could as well allow for software-assisted data processing. Finally, we suggest the link between the CCS trends of homopolymers and those obtained from (monodisperse) biomolecules to interpret potential folding differences during IM-MS studies.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Polímeros/química , Modelos Químicos , Modelos Moleculares , Estrutura Molecular
10.
Macromol Rapid Commun ; 40(1): e1800545, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30284334

RESUMO

The performance of lithium- and sodium-ion batteries relies notably on the accessibility to carbon electrodes of controllable porous structure and chemical composition. This work reports a facile synthesis of well-defined N-doped porous carbons (NPCs) using a poly(ionic liquid) (PIL) as precursor, and graphene oxide (GO)-stabilized poly(methyl methacrylate) (PMMA) nanoparticles as sacrificial template. The GO-stabilized PMMA nanoparticles are first prepared and then decorated by a thin PIL coating before carbonization. The resulting NPCs reach a satisfactory specific surface area of up to 561 m2 g-1 and a hierarchically meso- and macroporous structure while keeping a nitrogen content of 2.6 wt%. Such NPCs deliver a high reversible charge/discharge capacity of 1013 mA h g-1 over 200 cycles at 0.4 A g-1 for lithium-ion batteries, and show a good capacity of 204 mA h g-1 over 100 cycles at 0.1 A g-1 for sodium-ion batteries.


Assuntos
Carbono/química , Fontes de Energia Elétrica , Líquidos Iônicos/química , Lítio/química , Polímeros/química , Sódio/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
11.
Angew Chem Int Ed Engl ; 58(34): 11768-11773, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31216118

RESUMO

α-Alkylidene cyclic carbonates (αCCs) recently emerged as attractive CO2 -sourced synthons for the construction of complex organic molecules. Herein, we report the transformation of αCCs into novel families of sulfur-containing compounds by organocatalyzed chemoselective addition of thiols, following a domino process that is switched on/off depending on the desired product. The process is extremely fast and versatile in substrate scope, provides selectively linear thiocarbonates or elusive tetrasubstituted ethylene carbonates with high yields following a 100 % atom economy reaction, and valorizes CO2 as a renewable feedstock. It is also exploited to produce a large diversity of unprecedented functional polymers. It constitutes a robust platform for the design of new sulfur-containing organic synthons and important families of polymers.

12.
Biomacromolecules ; 18(2): 440-451, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28036161

RESUMO

Gene transfection with polymeric carrier remains a challenge; particularly, high transfection levels combined with low toxicity are hard to achieve. We herein revisit polyvinylamines, an old and neglected family of cationic polymers. They can be readily obtained by controlled hydrolysis of polyvinylamides prepared through (controlled) radical polymerization. A series of tailor-made and well-defined polyvinylamines bearing primary amino groups, and poly(N-methylvinylamine) bearing secondary amines, were evaluated for the transfection of cells with pDNA as a function of their molar mass, molar mass distribution, and degree of deacetylation. Unexpected high transfection levels, in combination with low cytotoxicity were recorded for both series. Surprisingly, a great impact of the molar mass was observed for the primary amine polyvinylamine series, whereas the results were mostly independent of molar mass or dispersity for the polymer bearing secondary amine. It was further established that a certain percentage of acetamide groups increased the transfection level, while maintaining low cytotoxicity. These results highlight for the first time the real potential of polyvinylamines as gene carriers, and make these polymers very attractive for further development in gene therapy.


Assuntos
Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Terapia Genética , Plasmídeos/administração & dosagem , Polímeros/química , Polivinil/química , Células HeLa , Humanos , Plasmídeos/genética , Polimerização
13.
Macromol Rapid Commun ; 38(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27805739

RESUMO

A chemically cross-linked but remarkably (re)processable shape-memory polymer (SMP) is designed by cross-linking poly(ε-caprolactone) (PCL) stars via the efficient triazolinedione click chemistry, based on the very fast and reversible Alder-ene reaction of 1,2,4-triazoline-3,5-dione (TAD) with indole compounds. Typically, a six-arm star-shaped PCL functionalized by indole moieties at the chain ends is melt-blended with a bisfunctional TAD, directly resulting in a cross-linked PCL-based SMP without the need of post-curing treatment. As demonstrated by the stress relaxation measurement, the labile character of the TAD-indole adducts under stress allows for the solid-state plasticity reprocessing of the permanent shape at will by compression molding of the raw cross-linked material, while keeping excellent shape-memory properties.


Assuntos
Reagentes de Ligações Cruzadas/síntese química , Poliésteres/síntese química , Triazóis/química , Reagentes de Ligações Cruzadas/química , Estrutura Molecular , Poliésteres/química
14.
Angew Chem Int Ed Engl ; 56(35): 10394-10398, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28657679

RESUMO

Described is a robust platform for the synthesis of a large diversity of novel functional CO2 -sourced polymers by exploiting the regiocontrolled ring-opening of α-alkylidene carbonates by various nucleophiles. The reactivity of α-alkylidene carbonates is dictated by the exocyclic olefinic group. The polyaddition of CO2 -sourced bis(α-alkylidene carbonate)s (bis-αCCs) with primary and secondary diamines provides novel regioregular functional poly(urethane)s. The reactivity of bis-αCCs is also exploited for producing new poly(ß-oxo-carbonate)s by organocatalyzed polyaddition with a diol. This synthesis platform provides new functional variants of world-class leading polymer families (polyurethanes, polycarbonates) and valorizes CO2 as a chemical feedstock.

15.
Biochim Biophys Acta ; 1854(3): 239-48, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25489872

RESUMO

Polyglutamine (polyQ) diseases, including Huntington's disease, are neurodegenerative disorders associated with the abnormal expansion of a polyQ tract within nine proteins. The polyQ expansion is thought to be a major determinant in the development of neurotoxicity, triggering protein aggregation into amyloid fibrils, although non-polyQ regions play a modulating role. In this work, we investigate the relative importance of the polyQ length, its location within a host protein, and the conformational state of the latter in the amyloid fibril elongation. Model polyQ proteins made of the ß-lactamase BlaP containing up to 79Q inserted at two different positions, and quartz crystal microbalance and atomic force microscopy were used for this purpose. We demonstrate that, independently of the polyQ tract location and the conformational state of the host protein, the relative elongation rate of fibrils increases linearly with the polyQ length. The slope of the linear fit is similar for both sets of chimeras (i.e., the elongation rate increases by ~1.9% for each additional glutamine), and is also similar to that previously observed for polyQ peptides. The elongation rate is, however, strongly influenced by the location of the polyQ tract within BlaP and the conformational state of BlaP. Moreover, comparison of our results with those previously reported for aggregation in solution indicates that these two parameters also modulate the ability of BlaP-polyQ chimeras to form the aggregation nucleus. Altogether our results suggest that non-polyQ regions are valuable targets in order to interfere with the process of amyloid fibril formation associated with polyQ diseases.


Assuntos
Amiloide/química , Amiloide/ultraestrutura , Peptídeos/química , Sítios de Ligação , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Conformação Proteica
16.
Macromol Rapid Commun ; 37(14): 1181-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26991998

RESUMO

Amphiphilic double poly(ionic liquid) (PIL) block copolymers are directly prepared by cobalt-mediated radical polymerization induced self-assembly (CMR-PISA) in water of N-vinyl imidazolium monomers carrying distinct alkyl chains. The cobalt-mediated radical polymerization of N-vinyl-3-ethyl imidazolium bromide (VEtImBr) is first carried out until high conversion in water at 30 °C, using an alkyl bis(acetylacetonate)cobalt(III) adduct as initiator and controlling agent. The as-obtained hydrophilic poly(N-vinyl-3-ethyl imidazolium bromide) (PVEtImBr) is then used as a macroinitiator for the CMR-PISA of N-vinyl-3-octyl imidazolium bromide (VOcImBr). Self-assembly of the amphiphilic PVEtImBr-b-PVOcImBr block copolymer, i.e., of PIL-b-PIL-type, rapidly takes place in water, forming polymer nanoparticles consisting of a hydrophilic PVEtImBr corona and a hydrophobic PVOcImBr core. Preliminary investigation into the effect of the size of the hydrophobic block on the dimension of the nanoparticles is also described.


Assuntos
Cobalto/química , Líquidos Iônicos/síntese química , Polímeros/síntese química , Água/química , Radicais Livres/química , Líquidos Iônicos/química , Estrutura Molecular , Polimerização , Polímeros/química
17.
Macromol Rapid Commun ; 37(6): 539-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26787365

RESUMO

Cobalt-mediated radical polymerization (CMRP) of vinyl acetate (VAc) is successfully achieved in supercritical carbon dioxide (scCO2). CMRP of VAc is conducted using an alkyl-cobalt(III) adduct that is soluble in scCO2. Kinetics studies coupled to visual observations of the polymerization medium highlight that the melt viscosity and PVAc molar mass (Mn) are key parameters that affect the CMRP in scCO2. It is noticed that CMRP is controlled for Mn up to 10 000 g mol(-1), but loss of control is progressively observed for higher molar masses when PVAc precipitates in the polymerization medium. Low molar mass PVAc macroinitiator, prepared by CMRP in scCO2, is then successfully used to initiate the acrylonitrile polymerization. PVAc-b-PAN block copolymer is collected as a free flowing powder at the end of the process although the dispersity of the copolymer increases with the reaction time. Although optimization is required to decrease the dispersity of the polymer formed, this CMRP process opens new perspectives for macromolecular engineering in scCO2 without the utilization of fluorinated comonomers or organic solvents.


Assuntos
Acrilonitrila/química , Dióxido de Carbono/química , Cobalto/química , Compostos de Vinila/química , Catálise , Cinética , Peso Molecular , Polimerização
18.
Small ; 11(19): 2323-32, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25580816

RESUMO

In this study, we report the synthesis of a nanoscaled drug delivery system, which is composed of a gold nanorod-like core and a mesoporous silica shell (GNR@MSNP) and partially uploaded with phase-changing molecules (1-tetradecanol, TD, T(m) 39 °C) as gatekeepers, as well as its ability to regulate the release of doxorubicin (DOX). Indeed, a nearly zero premature release is evidenced at physiological temperature (37 °C), whereas the DOX release is efficiently achieved at higher temperature not only upon external heating, but also via internal heating generated by the GNR core under near infrared irradiation. When tagged with folate moieties, GNR@MSNPs target specifically to KB cells, which are known to overexpress the folate receptors. Such a precise control over drug release, combining with the photothermal effect of GNR cores, provides promising opportunity for localized synergistic photothermal ablation and chemotherapy. Moreover, the performance in killing the targeted cancer cells is more efficient compared with the single phototherapeutic modality of GNR@MSNPs. This versatile combination of local heating, phototherapeutics, chemotherapeutics and gating components opens up the possibilities for designing multifunctional drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Ouro/química , Raios Infravermelhos , Nanotubos/química , Fototerapia/métodos , Dióxido de Silício/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Ácido Fólico/farmacologia , Temperatura Alta , Humanos , Microscopia de Fluorescência , Nanotubos/ultraestrutura , Porosidade
19.
Langmuir ; 31(47): 12839-44, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26566256

RESUMO

Using aminoglycoside antibiotics as drug models, it was shown that electrostatic complexes between hydrophilic drugs and oppositely charged double-hydrophilic block copolymers can form ordered mesophases. This phase behavior was evidenced by using poly(acrylic acid)-block-poly(ethylene oxide) block copolymers in the presence of silica precursors, and this allowed preparing drug-loaded mesoporous silica directly from the drug-polymer complexes. The novel synthetic strategy of the hybrid materials is highly efficient, avoiding waste and multistep processes; it also ensures optimal drug loading and provides pH-dependence of the drug release from the materials.


Assuntos
Portadores de Fármacos/química , Polímeros/química , Dióxido de Silício/química , Polietilenoglicóis/química , Solubilidade , Eletricidade Estática
20.
Anal Chem ; 86(19): 9693-700, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25188877

RESUMO

Hyperbranched and star shaped polymers have raised tremendous interest because of their unusual structural and photochemical properties, which provide them potent applications in various domains, namely in the biomedical field. In this context, the development of adequate tools aiming to probe particular three-dimensional features of such polymers is of crucial importance. In this present work, ion mobility coupled with mass spectrometry was used to experimentally derive structural information related to cationized linear and star shaped poly-ε-caprolactones as a function of their charge state and chain length. Two major conformations were observed and identified using theoretical modeling: (1) near spherical conformations whose sizes are invariant with the polymer topology for long and lightly charged chains and (2) elongated conformations whose sizes vary with the polymer topology for short and highly charged chains. These conformations were further confirmed by collisional activation experiments based on the ejection thresholds of the coordinated cations that vary according to the elongation amplitude of the polymer chains. Finally, a comparison between solution and gas-phase conformations highlights a compaction of the structure with a loss of specific chain arrangements during the ionization and desolvation steps of the electrospray process, fueling the long-time debated question related to the preservation of the analyte structure during the transfer into the mass spectrometer.


Assuntos
Espectrometria de Massas/métodos , Polímeros/química , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA