RESUMO
We present a rigorous quantum scattering study of the effects of hyperfine and Zeeman interactions on cold Li-H2 collisions in the presence of an external magnetic field using a recent ab initio potential energy surface. We find that the low-field-seeking states of H2 predominantly undergo elastic collisions: the ratio of elastic-to-inelastic cross sections exceeds 100 for collision energies below 100 mK. Furthermore, we demonstrate that most inelastic collisions conserve the space-fixed projection of the nuclear spin. We show that the anisotropic hyperfine interaction between the nuclear spin of H2 and the electron spin of Li can have a significant effect on inelastic scattering in the ultracold regime, as it mediates two processes: the electron spin relaxation in lithium and the nuclear spin-electron spin exchange. Given the predominance of elastic collisions and the propensity of inelastic collisions to retain H2 in its low-field-seeking states, our results open up the possibility of sympathetic cooling of molecular hydrogen by atomic lithium, paving the way for future exploration of ultracold collisions and high-precision spectroscopy of H2 molecules.
RESUMO
The remote sensing of abundance and properties of HCl-the main atmospheric reservoir of Cl atoms that directly participate in ozone depletion-is important for monitoring the partitioning of chlorine between "ozone-depleting" and "reservoir" species. Such remote studies require knowledge of the shapes of molecular resonances of HCl, which are perturbed by collisions with the molecules of the surrounding air. In this work, we report the first fully quantum calculations of collisional perturbations of the shape of a pure rotational line in H35Cl perturbed by an air-relevant molecule [as the first model system we choose the R(0) line in HCl perturbed by O2]. The calculations are performed on our new highly accurate HCl(X1Σ+)-O2(X3Σg-) potential energy surface. In addition to pressure broadening and shift, we also determine their speed dependencies and the complex Dicke parameter. This gives important input to the community discussion on the physical meaning of the complex Dicke parameter and its relevance for atmospheric spectra (previously, the complex Dicke parameter for such systems was mainly determined from phenomenological fits to experimental spectra and the physical meaning of its value in that context is questionable). We also calculate the temperature dependence of the line shape parameters and obtain agreement with the available experimental data. We estimate the total combined uncertainties of our calculations at 2% relative root-mean-square error in the simulated line shape at 296 K. This result constitutes an important step toward computational population of spectroscopic databases with accurate ab initio line shape parameters for molecular systems of terrestrial atmospheric importance.
RESUMO
We present ab initio calculations of the collisional broadening of the R(0) pure rotational line in CO (at 115 GHz) perturbed by O2. Our calculations are done in a fully quantum way by solving close-coupling quantum-scattering equations without any approximations. We also report a new, highly accurate CO-O2 potential energy surface on which we did the quantum-scattering calculations. The calculated collisional broadening agrees with the available experimental data in a wide temperature range. The calculated collisional shift is negligible compared to the broadening, which is also consistent with the experimental data. We combine this result with our previous calculations for the same line in CO perturbed by N2 [Józwiak et al., J. Chem. Phys. 154, 054314 (2021)]; the obtained air-perturbed broadening of the R(0) pure rotational line in CO and its temperature dependence perfectly agree with the HITRAN database. This result constitutes an important step toward developing a methodology for providing accurate ab initio reference data on spectroscopic collisional line-shape parameters for molecular systems relevant to the Earth's atmosphere and for populating spectroscopic line-by-line databases.
RESUMO
We report fully quantum calculations of the collisional perturbation of a molecular line for a system that is relevant for Earth's atmosphere. We consider the N2-perturbed pure rotational R(0) line in CO. The results agree well with the available experimental data. This work constitutes a significant step toward populating the spectroscopic databases with ab initio collisional line-shape parameters for atmosphere-relevant systems. The calculations were performed using three different recently reported potential energy surfaces (PESs). We conclude that all three PESs lead to practically the same values of the pressure broadening coefficients.
RESUMO
A proper description of the collisional perturbation of the shapes of molecular resonances is important for remote spectroscopic studies of the terrestrial atmosphere. Of particular relevance are the collisions between the O2 and N2 molecules-the two most abundant atmospheric species. In this work, we report a new highly accurate O2(X3Σg -)-N2(X1Σg +) potential energy surface and use it for performing the first quantum scattering calculations addressing line shapes for this system. We use it to model the shape of the 118 GHz fine structure line in O2 perturbed by collisions with N2 molecules, a benchmark system for testing our methodology in the case of an active molecule in a spin triplet state. The calculated collisional broadening of the line agrees well with the available experimental data over a wide temperature range relevant for the terrestrial atmosphere. This work constitutes a step toward populating the spectroscopic databases with ab initio line shape parameters for atmospherically relevant systems.
RESUMO
We report the most accurate, to the best of our knowledge, measurement of the position of the weak quadrupole S(2) 2-0 line in $ {{\rm D}_2} $D2. The spectra were collected with a frequency-stabilized cavity ringdown spectrometer (FS-CRDS) with an ultrahigh finesse optical cavity ($ {\cal F} = 637 000 $F=637000) and operating in the frequency-agile, rapid scanning spectroscopy (FARS) mode. Despite working in the Doppler-limited regime, we reached 40 kHz of statistical uncertainty and 161 kHz of absolute accuracy, achieving the highest accuracy for homonuclear isotopologues of molecular hydrogen. The accuracy of our measurement corresponds to the fifth significant digit of the leading term in quantum electrodynamics (QED) correction. We observe $ 2.3\sigma $2.3σ discrepancy with the recent theoretical value.