Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pain Pract ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745359

RESUMO

BACKGROUND: Low back pain (LBP) is a highly prevalent condition that comprise a large portion of outpatient practice, challenging the diagnosis and treatment. However, the diagnostic tools are limited to clinical history, physical examination and imaging. Degenerative disc disease (DDD) is a significant cause of LBP, and emerging literature confirms the elevated levels of biomarkers in the discs. These biomarkers may serve as a tool for diagnosis, but may also be useful in predicting the treatment outcome. Here, we examine the expression of various cytokines on 1-year recovery from patients with LBP. METHODS: Patient-reported outcome (PRO) in terms of pain intensity (VAS), disability (ODI), and quality of life (Eq-5D) is collected from 44 patients at baseline and 12 months after surgery to study the influence of baseline TNF-α, IL-1ß, and IL-6 mRNA expression in both annulus fibrosus (AF) and nucleus pulposus (NP). RESULTS: Between baseline and follow-up, our cohort showed improvement in VAS back pain (p < 0.001), VAS leg pain (p < 0.001), ODI (p = 0.02), and Eq-5D (p = 0.01). Baseline levels of IL-1 ß was positively correlated with VAS back pain scores in AF (p = 0.05) and NP (p = 0.01) at 1-year follow-up. TNF-α expression at baseline was also positively correlated to ODI scores (p = 0.01) at follow-up and inversely correlated to improvements in ODI score between baseline and follow-up, suggesting that high TNF-α expression at baseline is associated with poor outcomes from surgery. CONCLUSION: The results from our study support that TNF-α expression at baseline can serve as a very important predictor of treatment response from lumbar fusion surgery.

2.
Phys Med Biol ; 69(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38271737

RESUMO

Objective. Most methods for partial volume correction (PVC) of positron emission tomography (PET) data employ anatomical segmentation of images into regions of interest. This approach is not optimal for exploratory functional imaging beyond regional hypotheses. Here, we describe a novel method for unbiased voxel-wise PVC.Approach.B-spline basis functions were combined with geometric transfer matrices to enable a method (bsGTM) that provides PVC or alternatively provides smoothing with minimal regional crosstalk. The efficacy of the proposed method was evaluated using Monte Carlo simulations, human PET data, and murine functional PET data.Main results.In simulations, bsGTM provided recovery of partial volume signal loss comparable to iterative deconvolution, while demonstrating superior resilience to noise. In a real murine PET dataset, bsGTM yielded much higher sensitivity for detecting amphetamine-induced reduction of [11C]raclopride binding potential. In human PET data, bsGTM smoothing enabled increased signal-to-noise ratios with less degradation of binding potentials relative to Gaussian convolution or non-local means.Significance.bsGTM offers improved performance for PVC relative to iterative deconvolution, the current method of choice for voxel-wise PVC, especially in the common PET regime of low signal-to-noise ratio. The new method provides an anatomically unbiased way to compensate partial volume errors in cases where anatomical segmentation is unavailable or of questionable relevance or accuracy.


Assuntos
Algoritmos , Encéfalo , Humanos , Camundongos , Animais , Tomografia por Emissão de Pósitrons/métodos , Razão Sinal-Ruído , Racloprida , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA