Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Pharmacol ; 94: 57-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35659377

RESUMO

Treatment of hypertension until now has been directed at inhibition of vasoconstriction, of cardiac contractility and of blood volume regulation. Despite the arsenal of drugs available for this purpose, the control of target blood pressure is still a difficult goal to reach in outpatients. The nitric oxide-cyclic guanosine monophosphate signaling is one of the most important mediators of vasodilation. It might therefore be a potential and most welcome drug target for optimization of the treatment of hypertension. In this chapter we review the problems that can occur in this signaling system, the attempts that have been made to correct these problems, and those that are still under investigation. Recently developed, clinically safe medicines that are currently approved for other applications, such as myocardial infarction, await to be tested for essential systemic hypertension. We conclude that despite many years of research without translation, stimulation of nitric oxide-cyclic guanosine monophosphate is still a viable strategy in the prevention of the health risk posed by chronic hypertension.


Assuntos
Anti-Hipertensivos , Hipertensão , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , GMP Cíclico , Guanosina Monofosfato/uso terapêutico , Humanos , Hipertensão/tratamento farmacológico , Óxido Nítrico/uso terapêutico
2.
Aging Cell ; 21(9): e13683, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36029161

RESUMO

DNA damage is a causative factor in ageing of the vasculature and other organs. One of the most important vascular ageing features is reduced nitric oxide (NO)soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) signaling. We hypothesized that the restoration of NO-sGC-cGMP signaling with an sGC activator (BAY 54-6544) may have beneficial effects on vascular ageing and premature death in DNA repair-defective mice undergoing accelerated ageing. Eight weeks of treatment with a non-pressor dosage of BAY 54-6544 restored the decreased in vivo microvascular cutaneous perfusion in progeroid Ercc1∆/- mice to the level of wild-type mice. In addition, BAY 54-6544 increased survival of Ercc1∆/- mice. In isolated Ercc1∆/- aorta, the decreased endothelium-independent vasodilation was restored after chronic BAY 54-6544 treatment. Senescence markers p16 and p21, and markers of inflammation, including Ccl2, Il6 in aorta and liver, and circulating IL-6 and TNF-α were increased in Ercc1∆/- , which was lowered by the treatment. Expression of antioxidant genes, including Cyb5r3 and Nqo1, was favorably changed by chronic BAY 54-6544 treatment. In summary, BAY 54-6544 treatment improved the vascular function and survival rates in mice with accelerated ageing, which may have implication in prolonging health span in progeria and normal ageing.


Assuntos
Guanilato Ciclase , Pirazóis , Animais , Camundongos , Envelhecimento , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Guanilato Ciclase/metabolismo , Óxido Nítrico/metabolismo , Piridinas , Receptores Citoplasmáticos e Nucleares/genética , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo
3.
Front Pharmacol ; 12: 818355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35173613

RESUMO

Age-related cardiovascular diseases (CVDs) remain among the leading global causes of death, and vascular smooth muscle cell (VSMC) remodeling plays an essential role in its pathology. Reduced NO-cGMP pathway signaling is a major feature and pathogenic mechanism underlying vasodilator dysfunction. Recently, we identified phosphodiesterase (PDE) 1, an enzyme that hydrolyzes and inactivates the cyclic nucleotides cAMP and cGMP, and thereby provides a potential treatment target for restoring age-related vascular dysfunction due to aging of VSMC. Based on this hypothesis, we here tested the effects of PDE1 inhibition in a model of SMC-specific accelerated aging mice. SMC-KO and their WT littermates received either vehicle or the PDE1 inhibitor lenrispodun for 8 weeks. Vascular function was measured both in vivo (Laser Doppler technique) and ex vivo (organ bath). Moreover, we deployed UV irradiation in cell culture experiments to model accelerated aging in an in vitro situation. SMC-KO mice display a pronounced loss of vasodilator function in the isolated aorta, the cutaneous microvasculature, and mesenteric arteries. Ex vivo, in isolated vascular tissue, we found that PDE1 inhibition with lenrispodun improves vasodilation, while no improvement was observed in isolated aorta taken from mice after chronic treatment in vivo. However, during lenrispodun treatment in vivo, an enhanced microvascular response in association with upregulated cGMP levels was seen. Further, chronic lenrispodun treatment decreased TNF-α and IL-10 plasma levels while the elevated level of IL-6 in SMC-KO mice remained unchanged after treatment. PDE1 and senescence markers, p16 and p21, were increased in both SMC-KO aorta and cultured human VSMC in which DNA was damaged by ultraviolet irradiation. This increase was lowered by chronic lenrispodun. In contrast, lenrispodun increased the level of PDE1A in both situations. In conclusion, we demonstrated that PDE1 inhibition may be therapeutically useful in reversing aspects of age-related VSMC dysfunction by potentiating NO-cGMP signaling, preserving microvascular function, and decreasing senescence. Yet, after chronic treatment, the effects of PDE1 inhibition might be counteracted by the interplay between differential PDE1A and C expression. These results warrant further pharmacodynamic profiling of PDE enzyme regulation during chronic PDE1 inhibitor treatment.

4.
Oxid Med Cell Longev ; 2021: 2308317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504640

RESUMO

Persistently unrepaired DNA damage has been identified as a causative factor for vascular ageing. We have previously shown that a defect in the function or expression of the DNA repair endonuclease ERCC1 (excision repair cross complement 1) in mice leads to accelerated, nonatherosclerotic ageing of the vascular system from as early as 8 weeks after birth. Removal of ERCC1 from endothelial alone partly explains this ageing, as shown in endothelial-specific Ercc1 knockout mice. In this study, we determined vascular ageing due to DNA damage in vascular smooth muscle cells, as achieved by smooth muscle-selective genetic removal of ERCC1 DNA repair in mice (SMC-KO: SM22αCre+ Ercc1fl/-). Vascular ageing features in SMC-KO and their wild-type littermates (WT: SM22αCre+ Ercc1fl/+) were examined at the age of 14 weeks and 25 weeks. Both SMC-KO and WT mice were normotensive. Compared to WT, SMC-KO showed a reduced heart rate, fractional shortening, and cardiac output. SMC-KO showed progressive features of nonatherosclerotic vascular ageing as they aged from 14 to 25 weeks. Decreased subcutaneous microvascular dilatation and increased carotid artery stiffness were observed. Vasodilator responses measured in aortic rings in organ baths showed decreased endothelium-dependent and endothelium-independent responses, mostly due to decreased NO-cGMP signaling. NADPH oxidase 2 and phosphodiesterase 1 inhibition improved dilations. SMC-KO mice showed elevated levels of various cytokines that indicate a balance shift in pro- and anti-inflammatory pathways. In conclusion, SMC-KO mice showed a progressive vascular ageing phenotype in resistant and conduit arteries that is associated with cardiac remodeling and contractile dysfunction. The changes induced by DNA damage might be limited to VSMC but eventually affect EC-mediated responses. The fact that NADPH oxidase 2 as wells as phosphodiesterase 1 inhibition restores vasodilation suggests that both decreased NO bioavailability and cGMP degradation play a role in local vascular smooth muscle cell ageing induced by DNA damage.


Assuntos
Dano ao DNA , Endotélio Vascular/metabolismo , Músculo Liso Vascular/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos
5.
Hypertension ; 76(4): 1055-1068, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32829664

RESUMO

For the treatment of systemic hypertension, pharmacological intervention in nitric oxide-cyclic guanosine monophosphate signaling is a well-explored but unexploited option. In this review, we present the identified drug targets, including oxidases, mitochondria, soluble guanylyl cyclase, phosphodiesterase 1 and 5, and protein kinase G, important compounds that modulate them, and the current status of (pre)clinical development. The mode of action of these compounds is discussed, and based upon this, the clinical opportunities. We conclude that drugs that directly target the enzymes of the nitric oxide-cyclic guanosine monophosphate cascade are currently the most promising compounds, but that none of these compounds is under investigation as a treatment option for systemic hypertension.


Assuntos
Anti-Hipertensivos/uso terapêutico , GMP Cíclico/metabolismo , Hipertensão/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Humanos , Hipertensão/tratamento farmacológico , Guanilil Ciclase Solúvel/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA