Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 30(5): 2767-2775, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564356

RESUMO

High-precision virtual environments are increasingly important for various education, simulation, training, performance, and entertainment applications. We present HoloCamera, an innovative volumetric capture instrument to rapidly acquire, process, and create cinematic-quality virtual avatars and scenarios. The HoloCamera consists of a custom-designed free-standing structure with 300 high-resolution RGB cameras mounted with uniform spacing spanning the four sides and the ceiling of a room-sized studio. The light field acquired from these cameras is streamed through a distributed array of GPUs that interleave the processing and transmission of 4K resolution images. The distributed compute infrastructure that powers these RGB cameras consists of 50 Jetson AGX Xavier boards, with each processing unit dedicated to driving and processing imagery from six cameras. A high-speed Gigabit Ethernet network fabric seamlessly interconnects all computing boards. In this systems paper, we provide an in-depth description of the steps involved and lessons learned in constructing such a cutting-edge volumetric capture facility that can be generalized to other such facilities. We delve into the techniques employed to achieve precise frame synchronization and spatial calibration of cameras, careful determination of angled camera mounts, image processing from the camera sensors, and the need for a resilient and robust network infrastructure. To advance the field of volumetric capture, we are releasing a high-fidelity static light-field dataset, which will serve as a benchmark for further research and applications of cinematic-quality volumetric light fields.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 1062-1065, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28268508

RESUMO

Thermography, with high-resolution cameras, is being re-investigated as a possible breast cancer screening imaging modality, as it does not have the harmful radiation effects of mammography. This paper focuses on automatic extraction of medically interpretable non-vascular thermal features. We design these features to differentiate malignancy from different non-malignancy conditions, including hormone sensitive tissues and certain benign conditions, which have an increased thermal response. These features increase the specificity for breast cancer screening, which had been a long known problem in thermographic screening, while retaining high sensitivity. These features are also agnostic to different cameras and resolutions (up to an extent). On a dataset of around 78 subjects with cancer and 187 subjects without cancer, that have some benign diseases and conditions with thermal responses, we are able to get around 99% specificity while having 100% sensitivity. This indicates a potential break-through in thermographic screening for breast cancer. This shows promise for undertaking a comparison to mammography with larger numbers of subjects with more data variations.


Assuntos
Neoplasias da Mama/diagnóstico , Termografia , Mama/patologia , Humanos , Mamografia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA