Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2400876, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429239

RESUMO

Lithium-rich, cobalt-free oxides are promising potential positive electrode materials for lithium-ion batteries because of their high energy density, lower cost, and reduced environmental and ethical concerns. However, their commercial breakthrough is hindered because of their subpar electrochemical stability. This work studies the effect of aluminum doping on Li1.26 Ni0.15 Mn0.61 O2 as a lithium-rich, cobalt-free layered oxide. Al doping suppresses voltage fade and improves the capacity retention from 46% for Li1.26 Ni0.15 Mn0.61 O2 to 67% for Li1.26 Ni0.15 Mn0.56 Al0.05 O2 after 250 cycles at 0.2 C. The undoped material has a monoclinic Li2 MnO3 -type structure with spinel on the particle edges. In contrast, Al-doped materials (Li1.26 Ni0.15 Mn0.61-x Alx O2 ) consist of a more stable rhombohedral phase at the particle edges, with a monoclinic phase core. For this core-shell structure, the formation of Mn3+ is suppressed along with the material's decomposition to a disordered spinel, and the amount of the rhombohedral phase content increases during galvanostatic cycling. Whereas previous studies generally provided qualitative insight into the degradation mechanisms during electrochemical cycling, this work provides quantitative information on the stabilizing effect of the rhombohedral shell in the doped sample. As such, this study provides fundamental insight into the mechanisms through which Al doping increases the electrochemical stability of lithium-rich cobalt-free layered oxides.

2.
J Am Chem Soc ; 145(34): 18992-19004, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37603793

RESUMO

An AB2X4 spinel structure, with tetrahedral A and octahedral B sites, is a paradigmatic class of catalysts with several possible geometric configurations and numerous applications, including polysulfide conversion in metal-sulfur batteries. Nonetheless, the influence of the geometric configuration and composition on the mechanisms of catalysis and the precise manner in which spinel catalysts facilitate the conversion of polysulfides remain unknown. To enable controlled exposure of single active configurations, herein, Cotd2+ and Cooh3+ in Co3O4 catalysts for sodium polysulfide conversion are in large part replaced by Fetd2+ and Feoh3+, respectively, generating FeCo2O4 and CoFe2O4. Through an examination of electrochemical activation energies, the characterization of symmetric cells, and theoretical calculations, we determine that Cooh3+ serves as the active site for the breaking of S-S bonds, while Cotd2+ functions as the active site for the formation of S-Na bonds. The current study underlines the subtle relationship between activity and geometric configurations of spinel catalysts, providing unique insights for the rational development of improved catalysts by optimizing their atomic geometric configuration.

3.
Inorg Chem ; 57(12): 7025-7035, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29812935

RESUMO

This paper describes a study of the system MoO3-Nd2O3 using a combination of X-ray powder diffraction (XRD), neutron powder diffraction (NPD), thermogravimetric analysis (TGA), and ac impedance spectroscopy (IS). A phase-pure material is observed at a composition of 45.5 mol % Nd2O3, which corresponds to an ideal stoichiometry of Nd5Mo3O16.5. XRD and NPD show that the crystal structure is a superstructure of the fluorite arrangement, with long-range ordering of the two cation species leading to a doubled unit cell parameter. The sample is found to be significantly oxygen deficient, i.e. Nd5Mo3O15.63(4), when it is prepared by a solid-state reaction at 1473 K in air. TGA measurements indicate that the sample loses only minimal mass on heating to 1273 K in O2. IS studies of the mean conductivity under different atmospheres show that the sample is a mixed conductor between ambient temperature and 873 K, with a dominant electronic component at higher temperatures, as demonstrated by measurements under inert atmosphere. NPD measurements indicate that the anion vacancies are preferentially located on the O2 sites, while studies of the temperature dependence performed under an O2 atmosphere to 1273 K show significantly anisotropic thermal parameters of the anions. Together with analysis of the total neutron scattering data, this supports a model of oxygen ions hopping between O2 positions, with a vacancy, rather than interstitial, mechanism for the anion diffusion.

4.
Inorg Chem ; 56(6): 3657-3662, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28263582

RESUMO

In situ neutron diffraction was used to characterize the effect of temperature on the crystal structure of LiNiPO4. LiNiPO4 adopts an ordered olivine structure at room temperature, but, with increasing temperature, this work shows that a significant amount of Li and Ni cation exchange occurs, for example, ∼15% at 900 °C. The antisite disorder is detected by residual nuclear densities on the M1 and M2 octahedral sites in the olivine structure using difference Fourier maps and by changes in cation site occupancies, lattice parameters, and mean ⟨M-O⟩ bond distances. The antisite disorder is also responsible for chemical expansion of the crystal lattice in addition to thermal expansion. Antisite defect formation at high temperature and its reversibility on cooling can be understood as an entropically driven feature of the crystal structure of LiNiPO4. The lithium ion diffusion pathway, that follows a curved trajectory along the b axis in the olivine structure, is, therefore, susceptible to be blocked if synthesis conditions are not carefully controlled and should also be influenced by the chemically expanded lattice of the disordered structure if this is preserved to ambient temperature by rapid cooling.

5.
ACS Nano ; 16(7): 11102-11114, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35758405

RESUMO

The shuttling of soluble lithium polysulfides (LiPS) and the sluggish Li-S conversion kinetics are two main barriers toward the practical application of lithium-sulfur batteries (LSBs). Herein, we propose the addition of copper selenide nanoparticles at the cathode to trap LiPS and accelerate the Li-S reaction kinetics. Using both computational and experimental results, we demonstrate the crystal phase and concentration of copper vacancies to control the electronic structure of the copper selenide, its affinity toward LiPS chemisorption, and its electrical conductivity. The adjustment of the defect density also allows for tuning the electrochemically active sites for the catalytic conversion of polysulfide. The optimized S/Cu1.8Se cathode efficiently promotes and stabilizes the sulfur electrochemistry, thus improving significantly the LSB performance, including an outstanding cyclability over 1000 cycles at 3 C with a capacity fading rate of just 0.029% per cycle, a superb rate capability up to 5 C, and a high areal capacity of 6.07 mAh cm-2 under high sulfur loading. Overall, the present work proposes a crystal phase and defect engineering strategy toward fast and durable sulfur electrochemistry, demonstrating great potential in developing practical LSBs.

6.
Dalton Trans ; 50(19): 6710-6717, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33908967

RESUMO

The Semi-Solid Flow Battery (SSFB) is an interesting energy storage system (ESS) for stationary applications but, in spite of the significant work presented on this technology so far, understanding the chemical and physical factors limiting its electrochemical performance is still blurred by measurements under static conditions rather than under real operando conditions. In this study, we have used Vulcan carbon as a conductive additive to formulate LiNi1/3Co1/3Mn1/3O2 (NCM) based slurries as the catholyte to characterize electrical and electrochemical performances using a 3-electrode flow cell by electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge (GCD), respectively. The results are correlated with post-mortem analyses of recovered slurries using Scanning Electron Microscopy (SEM), Raman spectroscopy and Rietveld refinement of the NCM crystal structure. Due to the improved electrochemical cycling stability of the Vulcan-based NCM slurry and cell configuration used for measurements, we have been able to characterize the system in terms of electrical contributions and correlate them with particle degradation as well as detect antisite defect formation on cycling. The electrical stability of the contact resistance and cation mixing are identified as factors limiting the performance of the semi-solid slurry. The latter is frequently reported in porous electrodes for Li-ion batteries but, to our knowledge, it has not been reported for SSFBs to date.

7.
ACS Appl Mater Interfaces ; 9(46): 40290-40297, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29094924

RESUMO

CoxNi1-xTiO3 systems evaluated as photo- and electrocatalytic materials for oxygen evolution reaction (OER) from water have been studied. These materials have shown promising properties for this half-reaction both under (unbiased) visible-light photocatalytic approach in the presence of an electron scavenger and as electrocatalysts in dark conditions in basic media. In both situations, Co0.8Ni0.2TiO3 exhibits the best performance and is proved to display high faradaic efficiency. A synergetic effect between Co and Ni is established, improving the physicochemical properties such as surface area and pore size distribution, besides affecting the donor density and the charge carrier separation. At higher Ni content, the materials exhibit behavior more similar to that of NiTiO3, which is a less suitable material for OER than CoTiO3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA