Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 51(5): 2011-2032, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36617428

RESUMO

Transfer RNA (tRNA) molecules are essential to decode messenger RNA codons during protein synthesis. All known tRNAs are heavily modified at multiple positions through post-transcriptional addition of chemical groups. Modifications in the tRNA anticodons are directly influencing ribosome decoding and dynamics during translation elongation and are crucial for maintaining proteome integrity. In eukaryotes, wobble uridines are modified by Elongator, a large and highly conserved macromolecular complex. Elongator consists of two subcomplexes, namely Elp123 containing the enzymatically active Elp3 subunit and the associated Elp456 hetero-hexamer. The structure of the fully assembled complex and the function of the Elp456 subcomplex have remained elusive. Here, we show the cryo-electron microscopy structure of yeast Elongator at an overall resolution of 4.3 Å. We validate the obtained structure by complementary mutational analyses in vitro and in vivo. In addition, we determined various structures of the murine Elongator complex, including the fully assembled mouse Elongator complex at 5.9 Å resolution. Our results confirm the structural conservation of Elongator and its intermediates among eukaryotes. Furthermore, we complement our analyses with the biochemical characterization of the assembled human Elongator. Our results provide the molecular basis for the assembly of Elongator and its tRNA modification activity in eukaryotes.


The multi-subunit Elongator complex mediates the addition of a carboxymethyl group to wobble uridines in eukaryotic tRNAs. This tRNA modification is crucial to preserve the integrity of cellular proteomes and to protects us against severe neurodegenerative diseases. Elongator is organized in two distinct modules (i) the larger Elp123 subcomplex that binds and modifies the suitable tRNA substrate and (ii) the smaller Elp456 subcomplex that assists the release of the modified tRNA. The presented cryo-EM structures of Elongator show that the assemblies are very dynamic and undergo conformational rearrangements at consecutive steps of the process. Last but not least, the study provides a detailed reaction scheme and shows that the architecture of Elongator is highly conserved from yeast to mammals.


Assuntos
Complexos Multiproteicos , Elongação Traducional da Cadeia Peptídica , Proteínas de Ligação a RNA , Saccharomyces cerevisiae , Animais , Humanos , Camundongos , Microscopia Crioeletrônica , Histona Acetiltransferases/metabolismo , Ligação Proteica , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura
2.
Nucleic Acids Res ; 42(16): 10762-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25120270

RESUMO

Rad2/XPG belongs to the flap nuclease family and is responsible for a key step of the eukaryotic nucleotide excision DNA repair (NER) pathway. To elucidate the mechanism of DNA binding by Rad2/XPG, we solved crystal structures of the catalytic core of Rad2 in complex with a substrate. Rad2 utilizes three structural modules for recognition of the double-stranded portion of DNA substrate, particularly a Rad2-specific α-helix for binding the cleaved strand. The protein does not specifically recognize the single-stranded portion of the nucleic acid. Our data suggest that in contrast to related enzymes (FEN1 and EXO1), the Rad2 active site may be more accessible, which would create an exit route for substrates without a free 5' end.


Assuntos
Proteínas de Ligação a DNA/química , Endodesoxirribonucleases/química , Proteínas de Saccharomyces cerevisiae/química , Domínio Catalítico , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Exodesoxirribonucleases/química , Endonucleases Flap/química , Modelos Moleculares , Mutação , Proteínas Nucleares/genética , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética
3.
Nat Commun ; 15(1): 4094, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750017

RESUMO

tRNA modifications affect ribosomal elongation speed and co-translational folding dynamics. The Elongator complex is responsible for introducing 5-carboxymethyl at wobble uridine bases (cm5U34) in eukaryotic tRNAs. However, the structure and function of human Elongator remain poorly understood. In this study, we present a series of cryo-EM structures of human ELP123 in complex with tRNA and cofactors at four different stages of the reaction. The structures at resolutions of up to 2.9 Å together with complementary functional analyses reveal the molecular mechanism of the modification reaction. Our results show that tRNA binding exposes a universally conserved uridine at position 33 (U33), which triggers acetyl-CoA hydrolysis. We identify a series of conserved residues that are crucial for the radical-based acetylation of U34 and profile the molecular effects of patient-derived mutations. Together, we provide the high-resolution view of human Elongator and reveal its detailed mechanism of action.


Assuntos
Microscopia Crioeletrônica , RNA de Transferência , Humanos , RNA de Transferência/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Uridina/química , Uridina/metabolismo , Mutação , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química , Modelos Moleculares , Acetilação , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Ligação Proteica
4.
Sci Adv ; 9(2): eadd9688, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638176

RESUMO

Plants use solar energy to power cellular metabolism. The oxidation of plastoquinol and reduction of plastocyanin by cytochrome b6f (Cyt b6f) is known as one of the key steps of photosynthesis, but the catalytic mechanism in the plastoquinone oxidation site (Qp) remains elusive. Here, we describe two high-resolution cryo-EM structures of the spinach Cyt b6f homodimer with endogenous plastoquinones and in complex with plastocyanin. Three plastoquinones are visible and line up one after another head to tail near Qp in both monomers, indicating the existence of a channel in each monomer. Therefore, quinones appear to flow through Cyt b6f in one direction, transiently exposing the redox-active ring of quinone during catalysis. Our work proposes an unprecedented one-way traffic model that explains efficient quinol oxidation during photosynthesis and respiration.


Assuntos
Citocromos b , Plastocianina , Citocromos b/metabolismo , Plastocianina/metabolismo , Microscopia Crioeletrônica , Complexo Citocromos b6f/química , Complexo Citocromos b6f/metabolismo , Oxirredução , Fotossíntese , Plantas/metabolismo , Quinonas , Transporte de Elétrons
5.
J Neurochem ; 113(4): 848-59, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20180829

RESUMO

The present study uses a proteomic approach to examine possible alterations of protein expression in the hippocampus of rats that are subjected to chronic mild stress (CMS). These rats serve as an animal model that was developed to mimic anhedonia, which is one of the core symptoms of depression. As antidepressant treatment is effective after a few weeks of administration, we also aimed to identify changes that were linked to chronic (once daily for 4 weeks) and 'pulse' (once a week) administration of imipramine. Fifteen differential proteins were identified with 2D electrophoresis followed by mass spectrometry. Although both methods of imipramine administration restored normal sucrose consumption in rats that were subjected to CMS, the molecular mechanisms of these two therapies were different. CMS-induced changes in the levels of dynactin 2, Ash 2, non-neuronal SNAP25 and alpha-enolase were reversed by chronic imipramine, but 'pulse' treatment was not that effective.


Assuntos
Giro Denteado/metabolismo , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo , Imipramina/farmacologia , Proteoma/metabolismo , Estresse Psicológico/metabolismo , Animais , Antidepressivos Tricíclicos/farmacologia , Antidepressivos Tricíclicos/uso terapêutico , Apetite/efeitos dos fármacos , Apetite/fisiologia , Doença Crônica , Proteínas de Ligação a DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Giro Denteado/fisiopatologia , Transtorno Depressivo/etiologia , Modelos Animais de Doenças , Complexo Dinactina , Eletroforese em Gel Bidimensional , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Imipramina/uso terapêutico , Masculino , Espectrometria de Massas , Proteínas Associadas aos Microtúbulos/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Fosfopiruvato Hidratase/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Proteoma/efeitos dos fármacos , Ratos , Ratos Wistar , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Proteína 25 Associada a Sinaptossoma/efeitos dos fármacos , Proteína 25 Associada a Sinaptossoma/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/metabolismo
6.
DNA Repair (Amst) ; 85: 102746, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31739207

RESUMO

Nucleotide excision repair (NER) is a DNA repair pathway present in all domains of life. In bacteria, UvrA protein localizes the DNA lesion, followed by verification by UvrB helicase and excision by UvrC double nuclease. UvrA senses deformations and flexibility of the DNA duplex without precisely localizing the lesion in the damaged strand, an element essential for proper NER. Using a combination of techniques, we elucidate the mechanism of the damage verification step in bacterial NER. UvrA dimer recruits two UvrB molecules to its two sides. Each of the two UvrB molecules clamps a different DNA strand using its ß-hairpin element. Both UvrB molecules then translocate to the lesion, and UvrA dissociates. The UvrB molecule that clamps the damaged strand gets stalled at the lesion to recruit UvrC. This mechanism allows UvrB to verify the DNA damage and identify its precise location triggering subsequent steps in the NER pathway.


Assuntos
Bactérias/genética , DNA Helicases/química , DNA Helicases/metabolismo , Adenosina Trifosfatases/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dano ao DNA , Reparo do DNA , Endodesoxirribonucleases/metabolismo , Modelos Moleculares , Conformação Proteica
7.
Sci Adv ; 5(7): eaaw2326, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31309145

RESUMO

The highly conserved Elongator complex modifies transfer RNAs (tRNAs) in their wobble base position, thereby regulating protein synthesis and ensuring proteome stability. The precise mechanisms of tRNA recognition and its modification reaction remain elusive. Here, we show cryo-electron microscopy structures of the catalytic subcomplex of Elongator and its tRNA-bound state at resolutions of 3.3 and 4.4 Å. The structures resolve details of the catalytic site, including the substrate tRNA, the iron-sulfur cluster, and a SAM molecule, which are all validated by mutational analyses in vitro and in vivo. tRNA binding induces conformational rearrangements, which precisely position the targeted anticodon base in the active site. Our results provide the molecular basis for substrate recognition of Elongator, essential to understand its cellular function and role in neurodegenerative diseases and cancer.


Assuntos
Complexos Multiproteicos/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , RNA de Transferência/genética , Anticódon/química , Sítios de Ligação , Domínio Catalítico , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Modelos Moleculares , Conformação Molecular , Complexos Multiproteicos/química , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Ligação Proteica , RNA de Transferência/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
FEBS Lett ; 592(4): 502-515, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28960290

RESUMO

Nucleoside modifications in tRNA anticodons regulate ribosome dynamics during translation elongation and, thereby, fine-tune global protein synthesis rates. The highly conserved eukaryotic Elongator complex conducts specific C5-substitutions in tRNA wobble base uridines. It harbors two copies of each of its six individual subunits, which are all equally important for its activity. Here, we summarize recent developments focusing on the architecture of the Elongator complex, showing an asymmetric subunit arrangement, and its functional implications. In addition, we discuss the role of its proposed active site, its individual subunits and temporarily associated regulatory factors. Finally, we aim to provide mechanistic explanations for the link between mutations in Elongator subunits and the onset of several severe human pathologies.


Assuntos
Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Animais , Humanos , Multimerização Proteica , Estrutura Quaternária de Proteína , RNA de Transferência/genética , RNA de Transferência/metabolismo
9.
Nat Commun ; 7: 12568, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27562541

RESUMO

Nucleotide excision repair (NER) removes chemically diverse DNA lesions in all domains of life. In Escherichia coli, UvrA and UvrB initiate NER, although the mechanistic details of how this occurs in vivo remain to be established. Here, we use single-molecule fluorescence imaging to provide a comprehensive characterization of the lesion search, recognition and verification process in living cells. We show that NER initiation involves a two-step mechanism in which UvrA scans the genome and locates DNA damage independently of UvrB. Then UvrA recruits UvrB from solution to the lesion. These steps are coordinated by ATP binding and hydrolysis in the 'proximal' and 'distal' UvrA ATP-binding sites. We show that initial UvrB-independent damage recognition by UvrA requires ATPase activity in the distal site only. Subsequent UvrB recruitment requires ATP hydrolysis in the proximal site. Finally, UvrA dissociates from the lesion complex, allowing UvrB to orchestrate the downstream NER reactions.


Assuntos
Adenosina Trifosfatases/fisiologia , DNA Helicases/fisiologia , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Trifosfato de Adenosina/metabolismo , Dano ao DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Hidrólise , Microscopia/métodos , Modelos Moleculares , Ligação Proteica/fisiologia , Imagem Individual de Molécula/métodos
10.
Nat Struct Mol Biol ; 18(2): 191-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21240268

RESUMO

One of the primary pathways for removal of DNA damage is nucleotide excision repair (NER). In bacteria, the UvrA protein is the component of NER that locates the lesion. A notable feature of NER is its ability to act on many DNA modifications that vary in chemical structure. So far, the mechanism underlying this broad specificity has been unclear. Here, we report the first crystal structure of a UvrA protein in complex with a chemically modified oligonucleotide. The structure shows that the UvrA dimer does not contact the site of lesion directly, but rather binds the DNA regions on both sides of the modification. The DNA region harboring the modification is deformed, with the double helix bent and unwound. UvrA uses damage-induced deformations of the DNA and a less rigid structure of the modified double helix for indirect readout of the lesion.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Thermotoga maritima/metabolismo , Difosfato de Adenosina/metabolismo , Sequência de Bases , Cristalografia por Raios X , DNA/química , Dano ao DNA , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Thermotoga maritima/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA