Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Br J Psychiatry ; 224(4): 127-131, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362636

RESUMO

BACKGROUND: There are increasing calls for neurodivergent peoples' involvement in research into neurodevelopmental conditions. So far, however, this has tended to be achieved only through membership of external patient and public involvement (PPI) panels. The Regulating Emotions - Strengthening Adolescent Resilience (RE-STAR) programme is building a new participatory model of translational research that places young people with diagnoses of attention-deficit hyperactivity disorder (ADHD) and autism at the heart of the research team so that they can contribute to shaping and delivering its research plan. AIMS: To outline the principles on which the RE-STAR participatory model is based and describe its practical implementation and benefits, especially concerning the central role of members of the Youth Researcher Panel (Y-RPers). METHOD: The model presented is a culmination of a 24-month process during which Y-RPers moved from advisors to co-researchers integrated within RE-STAR. It is shaped by the principles of co-intentionality. The account here was agreed following multiple iterative cycles of collaborative discussion between academic researchers, Y-RPers and other stakeholders. RESULTS: Based on our collective reflections we offer general guidance on how to effectively integrate young people with diagnoses of ADHD and/or autism into the core of the translational research process. We also describe the specific theoretical, methodological and analytical benefits of Y-RPer involvement in RE-STAR. CONCLUSIONS: Although in its infancy, RE-STAR has demonstrated the model's potential to enrich translational science in a way that can change our understanding of the relationship between autism, ADHD and mental health. When appropriately adapted we believe the model can be applied to other types of neurodivergence and/or mental health conditions.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Autístico , Transtornos Globais do Desenvolvimento Infantil , Criança , Adolescente , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Espectro Autista/psicologia , Ciência Translacional Biomédica
2.
J Appl Res Intellect Disabil ; 37(4): e13244, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733213

RESUMO

BACKGROUND: Previous systematic reviews of the relationships of people with intellectual disabilities have included consideration of intimate relationships. In this paper, we report a systematic review of papers describing friendship only. METHOD: A systematic qualitative meta-synthesis of the research exploring experiences of friendship as reported by people with intellectual disabilities. RESULTS: Seven papers met the inclusion criteria for analysis. Three superordinate themes were identified. (1) Reciprocity, 'Someone who helps me, and I help them'. (2) The building blocks of friendships, 'I can tell her some secrets'. (3) Managing friendship difficulties, 'In real life it's much harder'. CONCLUSION: People with intellectual disabilities value friendship and actively engage in reciprocal exchanges. We explore the strengths and limitations of current research, clinical implications, and directions for future research.


Assuntos
Amigos , Deficiência Intelectual , Humanos , Deficiência Intelectual/psicologia , Amigos/psicologia , Relações Interpessoais
3.
Int J Mol Sci ; 21(10)2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456284

RESUMO

Radiation-induced central nervous system toxicity is a significant risk factor for patients receiving cancer radiotherapy. Surprisingly, the mechanisms responsible for the DNA damage-triggered neuronal cell death following irradiation have yet to be deciphered. Using primary cortical neuronal cultures in vitro, we demonstrated that X-ray exposure induces the mitochondrial pathway of intrinsic apoptosis and that miR-23a-3p plays a significant role in the regulation of this process. Primary cortical neurons exposed to irradiation show the activation of DNA-damage response pathways, including the sequential phosphorylation of ATM kinase, histone H2AX, and p53. This is followed by the p53-dependent up-regulation of the pro-apoptotic Bcl2 family molecules, including the BH3-only molecules PUMA, Noxa, and Bim, leading to mitochondrial outer membrane permeabilization (MOMP) and the release of cytochrome c, which activates caspase-dependent apoptosis. miR-23a-3p, a negative regulator of specific pro-apoptotic Bcl-2 family molecules, is rapidly decreased after neuronal irradiation. By increasing the degradation of PUMA and Noxa mRNAs in the RNA-induced silencing complex (RISC), the administration of the miR-23a-3p mimic inhibits the irradiation-induced up-regulation of Noxa and Puma. These changes result in an attenuation of apoptotic processes such as MOMP, the release of cytochrome c and caspases activation, and a reduction in neuronal cell death. The neuroprotective effects of miR-23a-3p administration may not only involve the direct inhibition of pro-apoptotic Bcl-2 molecules downstream of p53 but also include the attenuation of secondary DNA damage upstream of p53. Importantly, we demonstrated that brain irradiation in vivo results in the down-regulation of miR-23a-3p and the elevation of pro-apoptotic Bcl2-family molecules PUMA, Noxa, and Bax, not only broadly in the cortex and hippocampus, except for Bax, which was up-regulated only in the hippocampus but also selectively in isolated neuronal populations from the irradiated brain. Overall, our data suggest that miR-23a-3p down-regulation contributes to irradiation-induced intrinsic pathways of neuronal apoptosis. These regulated pathways of neurodegeneration may be the target of effective neuroprotective strategies using miR-23a-3p mimics to block their development and increase neuronal survival after irradiation.


Assuntos
Apoptose , Dano ao DNA , MicroRNAs/metabolismo , Neurônios/metabolismo , Radiação Ionizante , Transdução de Sinais , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína 11 Semelhante a Bcl-2/metabolismo , DNA/metabolismo , DNA/efeitos da radiação , Reparo do DNA , Masculino , Camundongos , MicroRNAs/fisiologia , Neurônios/fisiologia , Neurônios/efeitos da radiação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
4.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718090

RESUMO

Radiotherapy for brain tumors induces neuronal DNA damage and may lead to neurodegeneration and cognitive deficits. We investigated the mechanisms of radiation-induced neuronal cell death and the role of miR-711 in the regulation of these pathways. We used in vitro and in vivo models of radiation-induced neuronal cell death. We showed that X-ray exposure in primary cortical neurons induced activation of p53-mediated mechanisms including intrinsic apoptotic pathways with sequential upregulation of BH3-only molecules, mitochondrial release of cytochrome c and AIF-1, as well as senescence pathways including upregulation of p21WAF1/Cip1. These pathways of irradiation-induced neuronal apoptosis may involve miR-711-dependent downregulation of pro-survival genes Akt and Ang-1. Accordingly, we demonstrated that inhibition of miR-711 attenuated degradation of Akt and Ang-1 mRNAs and reduced intrinsic apoptosis after neuronal irradiation; likewise, administration of Ang-1 was neuroprotective. Importantly, irradiation also downregulated two novel miR-711 targets, DNA-repair genes Rad50 and Rad54l2, which may impair DNA damage responses, amplifying the stimulation of apoptotic and senescence pathways and contributing to neurodegeneration. Inhibition of miR-711 rescued Rad50 and Rad54l2 expression after neuronal irradiation, enhancing DNA repair and reducing p53-dependent apoptotic and senescence pathways. Significantly, we showed that brain irradiation in vivo persistently elevated miR-711, downregulated its targets, including pro-survival and DNA-repair molecules, and is associated with markers of neurodegeneration, not only across the cortex and hippocampus but also specifically in neurons isolated from the irradiated brain. Our data suggest that irradiation-induced miR-711 negatively modulates multiple pro-survival and DNA-repair mechanisms that converge to activate neuronal intrinsic apoptosis and senescence. Using miR-711 inhibitors to block the development of these regulated neurodegenerative pathways, thus increasing neuronal survival, may be an effective neuroprotective strategy.


Assuntos
Reparo do DNA/efeitos da radiação , MicroRNAs/biossíntese , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Lesões Experimentais por Radiação/metabolismo , Regulação para Cima/efeitos da radiação , Raios X/efeitos adversos , Animais , Morte Celular/efeitos da radiação , Dano ao DNA , Masculino , Camundongos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Lesões Experimentais por Radiação/patologia
5.
Transfusion ; 59(S2): 1518-1521, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30730557

RESUMO

INTRODUCTION: There has been interest in using human blood products in nonhuman primate models of trauma to supplement human studies and to provide evidence to guide novel trauma resuscitation strategies. The compatibility of human RBCs has not been extensively studied in nonhuman primate species. METHODS: Whole blood samples were collected from five healthy, nontransfused, not previously pregnant Chinese-bred rhesus macaques. The whole blood was centrifuged, and the plasma was decanted from each sample. Group O-negative human RBCs were mixed with the plasma from the rhesus macaque monkeys. Compatibility testing was performed by an immediate spin test and polyspecific and monospecific anti-human globulin (AHG) tests in glass tubes. RESULTS: Immediate spin testing revealed three out of five plasma samples (60%) from rhesus macaques caused at least 1+ agglutination with the human RBCs. Polyspecific anti-human globulin (AHG) tests demonstrated that two of five plasma samples (40%) from rhesus macaques caused at least 1+ agglutination with the human RBC, while the monospecific AHG testing revealed that the incompatibility was caused by C3d, not IgG. CONCLUSION: Human RBCs are not compatible with the plasma of some, but not all, Chinese-bred rhesus macaques.


Assuntos
Sistema ABO de Grupos Sanguíneos/sangue , Testes de Aglutinação/métodos , Eritrócitos/química , Eritrócitos/metabolismo , Hemaglutinação , Imunoglobulina G/sangue , Sistema ABO de Grupos Sanguíneos/química , Animais , Feminino , Humanos , Macaca mulatta
6.
Pharm Res ; 34(12): 2698-2709, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28971289

RESUMO

PURPOSE: Biomarkers serve a number of purposes during drug development including defining the natural history of injury/disease, serving as a secondary endpoint or trigger for intervention, and/or aiding in the selection of an effective dose in humans. BIO 300 is a patent-protected pharmaceutical formulation of nanoparticles of synthetic genistein being developed by Humanetics Corporation. The primary goal of this metabolomic discovery experiment was to identify biomarkers that correlate with radiation-induced lung injury and BIO 300 efficacy for mitigating tissue damage based upon the primary endpoint of survival. METHODS: High-throughput targeted metabolomics of lung tissue from male C57L/J mice exposed to 12.5 Gy whole thorax lung irradiation, treated daily with 400 mg/kg BIO 300 for either 2 weeks or 6 weeks starting 24 h post radiation exposure, were assayed at 180 d post-radiation to identify potential biomarkers. RESULTS: A panel of lung metabolites that are responsive to radiation and able to distinguish an efficacious treatment schedule of BIO 300 from a non-efficacious treatment schedule in terms of 180 d survival were identified. CONCLUSIONS: These metabolites represent potential biomarkers that could be further validated for use in drug development of BIO 300 and in the translation of dose from animal to human.


Assuntos
Genisteína/uso terapêutico , Lesão Pulmonar/tratamento farmacológico , Pulmão/efeitos dos fármacos , Pulmão/efeitos da radiação , Metabolômica/métodos , Lesões Experimentais por Radiação/tratamento farmacológico , Protetores contra Radiação/uso terapêutico , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Modelos Animais de Doenças , Genisteína/análogos & derivados , Genisteína/farmacologia , Pulmão/metabolismo , Lesão Pulmonar/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/metabolismo , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia
7.
Biomed Chromatogr ; 31(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27557409

RESUMO

Lipids represent biologically ubiquitous and highly dynamic molecules in terms of abundance and structural diversity. Whereas the potential for lipids to inform on disease/injury is promising, their unique characteristics make detection and identification of lipids from biological samples analytically demanding. We report the use of ultraperformance convergence chromatography (UPC2 ), a variant of supercritical fluid chromatography, coupled to high-resolution, data-independent tandem mass spectrometry for characterization of total lipid extracts from mouse lung tissue. The UPC2 platform resulted in lipid class separation and when combined with orthogonal column chemistries yielded chromatographic separation of intra-class species based on acyl chain hydrophobicity. Moreover, the combined approach of using UPC2 with orthogonal column chemistries, accurate mass measurements, time-aligned low- and high-collision energy total ion chromatograms, and positive and negative ion mode product ion spectra correlation allowed for confident lipid identification. Of great interest was the identification of differentially expressed ceramides that were elevated 24 h post whole thorax lung irradiation. The identification of lipids that were elevated 24 h post-irradiation signifies a unique opportunity to investigate early mechanisms of action prior to the onset of clinical symptoms in the whole thorax lung irradiation mouse model.


Assuntos
Biomarcadores/análise , Lipídeos/análise , Espectrometria de Massas em Tandem/métodos , Animais , Ceramidas/análise , Cromatografia Líquida de Alta Pressão , Cromatografia com Fluido Supercrítico , Camundongos
8.
Lab Invest ; 96(9): 936-49, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27479087

RESUMO

Within this millennium there has been resurgence in funding and research dealing with animal models of radiation-induced lung injury to identify and establish predictive biomarkers and effective mitigating agents that are applicable to humans. Most have been performed on mice but there needs to be assurance that the emphasis on such models is not misplaced. We therefore considered it timely to perform a comprehensive appraisal of the literature dealing with radiation lung injury of mice and to critically evaluate the validity and clinical relevance of the research. A total of 357 research papers covering the period of 1970-2015 were extensively reviewed. Whole thorax irradiation (WTI) has become the most common treatment for studying lung injury in mice and distinct trends were seen with regard to the murine strain, radiation dose, intended pathology investigated, length of study, and assays. Recently, the C57BL/6 strain has been increasingly used in the majority of these studies with the notion that they are susceptible to pulmonary fibrosis. Nonetheless, many of these investigations depend on animal survival as the primary end point and neglect the importance of radiation pneumonitis and the anomaly of lethal pleural effusions. A relatively large variation in survival times of C5BL/6 mice is also seen among different institutions pointing to the need for standardization of radiation treatments and environmental conditions. An analysis of mitigating drug treatments is complicated by the fact that the majority of studies are limited to the C57BL/6 strain with a premature termination of the experiments and do not establish whether the treatment actually prevents or simply delays the progression of radiation injury. This survey of the literature has pointed to several improvements that need to be considered in establishing a reliable preclinical murine model of radiation lung injury. The lethality end point should also be used cautiously and with greater emphasis on other assays such as non-invasive lung functional and imaging monitoring in order to quantify specific pulmonary injury that can be better extrapolated to radiation toxicity encountered in our own species.


Assuntos
Modelos Animais de Doenças , Expressão Gênica/efeitos da radiação , Pulmão/efeitos da radiação , Lesões por Radiação/metabolismo , Animais , Humanos , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Lesões por Radiação/genética , Especificidade da Espécie , Inquéritos e Questionários
9.
Am J Pathol ; 182(4): 1248-54, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23395092

RESUMO

Gastrin-releasing peptide (GRP), secreted by pulmonary neuroendocrine cells, mediates oxidant-induced lung injury in animal models. Considering that GRP blockade abrogates pulmonary inflammation and fibrosis in hyperoxic baboons, we hypothesized that ionizing radiation triggers GRP secretion, contributing to inflammatory and fibrotic phases of radiation-induced lung injury (RiLI). Using C57BL/6 mouse model of pulmonary fibrosis developing ≥20 weeks after high-dose thoracic radiation (15 Gy), we injected small molecule 77427 i.p. approximately 1 hour after radiation then twice weekly for up to 20 weeks. Sham controls were anesthetized and placed in the irradiator without radiation. Lung paraffin sections were immunostained and quantitative image analyses performed. Mice exposed to radiation plus PBS had increased interstitial CD68(+) macrophages 4 weeks after radiation and pulmonary neuroendocrine cells hyperplasia 6 weeks after radiation. Ten weeks later radiation plus PBS controls had significantly increased pSmad2/3(+) nuclei/cm(2). GRP blockade with 77427 treatment diminished CD68(+), GRP(+), and pSmad2/3(+) cells. Finally, interstitial fibrosis was evident 20 weeks after radiation by immunostaining for α-smooth muscle actin and collagen deposition. Treatment with 77427 abrogated interstitial α-smooth muscle actin and collagen. Sham mice given 77427 did not differ significantly from PBS controls. Our data are the first to show that GRP blockade decreases inflammatory and fibrotic responses to radiation in mice. GRP blockade is a novel radiation fibrosis mitigating agent that could be clinically useful in humans exposed to radiation therapeutically or unintentionally.


Assuntos
Peptídeo Liberador de Gastrina/antagonistas & inibidores , Lesão Pulmonar/tratamento farmacológico , Lesões por Radiação/tratamento farmacológico , Animais , Contagem de Células , Colágeno/metabolismo , Peptídeo Liberador de Gastrina/metabolismo , Humanos , Pulmão/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Pulmão/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Células Neuroendócrinas/efeitos dos fármacos , Células Neuroendócrinas/metabolismo , Células Neuroendócrinas/patologia , Células Neuroendócrinas/efeitos da radiação , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Lesões por Radiação/complicações , Lesões por Radiação/patologia , Radiografia , Proteínas Smad/metabolismo
10.
Med Phys ; 51(2): 1421-1432, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38207016

RESUMO

BACKGROUND: The recent rediscovery of the FLASH effect, a normal tissue sparing phenomenon observed in ultra-high dose rate (UHDR) irradiations, has instigated a surge of research endeavors aiming to close the gap between experimental observation and clinical treatment. However, the dependences of the FLASH effect and its underpinning mechanisms on beam parameters are not well known, and large-scale in vivo studies using murine models of human cancer are needed for these investigations. PURPOSE: To commission a high-throughput, variable dose rate platform providing uniform electron fields (≥15 cm diameter) at conventional (CONV) and UHDRs for in vivo investigations of the FLASH effect and its dependences on pulsed electron beam parameters. METHODS: A murine whole-thoracic lung irradiation (WTLI) platform was constructed using a 1.3 cm thick Cerrobend collimator forming a 15 × 1.6 cm2 slit. Control of dose and dose rate were realized by adjusting the number of monitor units and couch vertical position, respectively. Achievable doses and dose rates were investigated using Gafchromic EBT-XD film at 1 cm depth in solid water and lung-density phantoms. Percent depth dose (PDD) and dose profiles at CONV and various UHDRs were also measured at depths from 0 to 2 cm. A radiation survey was performed to assess radioactivation of the Cerrobend collimator by the UHDR electron beam in comparison to a precision-machined copper alternative. RESULTS: This platform allows for the simultaneous thoracic irradiation of at least three mice. A linear relationship between dose and number of monitor units at a given UHDR was established to guide the selection of dose, and an inverse-square relationship between dose rate and source distance was established to guide the selection of dose rate between 20 and 120 Gy·s-1 . At depths of 0.5 to 1.5 cm, the depth range relevant to murine lung irradiation, measured PDDs varied within ±1.5%. Similar lateral dose profiles were observed at CONV and UHDRs with the dose penumbrae widening from 0.3 mm at 0 cm depth to 5.1 mm at 2.0 cm. The presence of lung-density plastic slabs had minimal effect on dose distributions as compared to measurements made with only solid water slabs. Instantaneous dose rate measurements of the activated copper collimator were up to two orders of magnitude higher than that of the Cerrobend collimator. CONCLUSIONS: A high-throughput, variable dose rate platform has been developed and commissioned for murine WTLI electron FLASH radiotherapy. The wide field of our UHDR-enabled linac allows for the simultaneous WTLI of at least three mice, and for the average dose rate to be modified by changing the source distance, without affecting dose distribution. The platform exhibits uniform, and comparable dose distributions at CONV and UHDRs up to 120 Gy·s-1 , owing to matched and flattened 16 MeV CONV and UHDR electron beams. Considering radioactivation and exposure to staff, Cerrobend collimators are recommended above copper alternatives for electron FLASH research. This platform enables high-throughput animal irradiation, which is preferred for experiments using a large number of animals, which are required to effectively determine UHDR treatment efficacies.


Assuntos
Cobre , Elétrons , Humanos , Animais , Camundongos , Aceleradores de Partículas , Pulmão , Água , Dosagem Radioterapêutica , Radiometria
11.
Phys Med Biol ; 69(14)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38876112

RESUMO

Objective. To fabricate and validate a novel focused collimator designed to spare normal tissue in a murine hemithoracic irradiation model using 250 MeV protons delivered at ultra-high dose rates (UHDRs) for preclinical FLASH radiation therapy (FLASH-RT) studies.Approach. A brass collimator was developed to shape 250 MeV UHDR protons from our Varian ProBeam. Six 13 mm apertures, of equivalent size to kV x-ray fields historically used to perform hemithorax irradiations, were precisely machined to match beam divergence, allowing concurrent hemithoracic irradiation of six mice while sparing the contralateral lung and abdominal organs. The collimated field profiles were characterized by film dosimetry, and a radiation survey of neutron activation was performed to ensure the safety of staff positioning animals.Main results. The brass collimator produced 1.2 mm penumbrae radiation fields comparable to kV x-rays used in preclinical studies. The penumbrae in the six apertures are similar, with full-width half-maxima of 13.3 mm and 13.5 mm for the central and peripheral apertures, respectively. The collimator delivered a similar dose at an average rate of 52 Gy s-1for all apertures. While neutron activation produces a high (0.2 mSv h-1) initial ambient equivalent dose rate, a parallel work-flow in which imaging and setup are performed without the collimator ensures safety to staff.Significance. Scanned protons have the greatest potential for future translation of FLASH-RT in clinical treatments due to their ability to treat deep-seated tumors with high conformality. However, the Gaussian distribution of dose in proton spots produces wider lateral penumbrae compared to other modalities. This presents a challenge in small animal pre-clinical studies, where millimeter-scale penumbrae are required to precisely target the intended volume. Offering high-throughput irradiation of mice with sharp penumbrae, our novel collimator-based platform serves as an important benchmark for enabling large-scale, cost-effective radiobiological studies of the FLASH effect in murine models.


Assuntos
Terapia com Prótons , Animais , Camundongos , Terapia com Prótons/instrumentação , Terapia com Prótons/métodos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica
12.
Radiat Res ; 201(1): 7-18, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019093

RESUMO

Exposure to high-dose ionizing radiation can lead to life-threatening injuries and mortality. Bone marrow is the most sensitive organ to radiation damage, resulting in the hematopoietic acute radiation syndrome (H-ARS) with the potential sequelae of infection, hemorrhage, anemia, and death if untreated. The development of medical countermeasures (MCMs) to protect or mitigate radiation injury is a medical necessity. In our well-established murine model of H-ARS we have demonstrated that the prostaglandin E2 (PGE2) analog 16,16 dimethyl-PGE2 (dmPGE2) has survival efficacy as both a radioprotectant and radiomitigator. The purpose of this study was to investigate the pharmacokinetics (PK) and biodistribution of dmPGE2 when used as a radioprotector in irradiated and non-irradiated inbred C57BL/6J mice, PK in irradiated and non-irradiated Jackson Diversity Outbred (JDO) mice, and the PK profile of dmPGE2 in non-irradiated non-human primates (NHPs). The C57BL/6J and JDO mice each received a single subcutaneous (SC) dose of 35 ug of dmPGE2 and were randomized to either receive radiation 30 min later or remain non-irradiated. Plasma and tissue PK profiles were established. The NHP were dosed with 0.1 mg/kg by SC administration and the PK profile in plasma was established. The concentration time profiles were analyzed by standard non-compartmental analysis and the metrics of AUC0-Inf, AUC60-480 (AUC from 60-480 min), Cmax, and t1/2 were evaluated. AUC60-480 represents the postirradiation time frame and was used to assess radiation effect. Overall, AUC0-Inf, Cmax, and t1/2 were numerically similar between strains (C57BL/6J and JDO) when combined, regardless of exposure status (AUC0-Inf: 112.50 ng·h/ml and 114.48 ng·h/ml, Cmax: 44.53 ng/ml and 63.96 ng/ml; t1/2: 1.8 h and 1.1 h, respectively). PK metrics were numerically lower in irradiated C57BL/6J mice than in non-irradiated mice [irradiation ratio: irradiated values/non-irradiated values = 0.71 for AUC60-480 (i.e., 29% lower), and 0.6 for t1/2]. In JDO mice, the radiation ratio was 0.53 for AUC60-480 (i.e., 47% lower), and 1.7 h for t1/2. The AUC0-Inf, Cmax, and t1/2 of the NHPs were 29.20 ng·h/ml, 7.68 ng/ml, and 3.26 h, respectively. Despite the numerical differences seen between irradiated and non-irradiated groups in PK parameters, the effect of radiation on PK can be considered minimal based on current data. The biodistribution in C57BL/6J mice showed that dmPGE2 per gram of tissue was highest in the lungs, regardless of exposure status. The radiation ratio for the different tissue AUC60-480 in C57BL/6J mice ranged between 0.5-1.1 (50% lower to 10% higher). Spleen, liver and bone marrow showed close to twice lower exposures after irradiation, whereas heart had a 10% higher exposure. Based on the clearance values from mice and NHP, the estimated allometric scaling coefficient was 0.81 (95% CI: 0.75, 0.86). While slightly higher than the current literature estimates of 0.75, this scaling coefficient can be considered a reasonable estimate and can be used to scale dmPGE2 dosing from animals to humans for future trials.


Assuntos
Síndrome Aguda da Radiação , Dinoprostona , Animais , Camundongos , Síndrome Aguda da Radiação/tratamento farmacológico , Camundongos Endogâmicos C57BL , Primatas , Distribuição Tecidual
13.
Disaster Med Public Health Prep ; : 1-20, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37937347

RESUMO

Development of medical countermeasures (MCM) to mitigate and/or treat the pulmonary complications associated with exposure to chemical, radiological, and/or nuclear weapons is a United States (U.S.) national public health preparedness posture priority. Pulmonary exposure to either sulfur mustard vapor or radiation causes oxidative damage, vascular injury, hyperinflammation, and pro-fibrotic signaling cascades that lead to life-threatening and potentially debilitating lung disease. There is no MCM currently approved by the U.S. Food and Drug Administration (FDA) to mitigate and/or treat lung injury caused by sulfur mustard or radiation exposure. Thus, there remains a major unmet public health need for development of threat-agnostic, host-directed therapeutics that target common pathophysiological mechanisms underlying the progression of acute and/or late lung injury independent of the etiology of disease. This review describes the clinical manifestations and underlying mechanisms of sulfur mustard and radiation-induced lung injury and regulatory considerations for MCM development under the non-traditional Animal Rule pathway.

14.
J Sex Med ; 9(6): 1535-49, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22489731

RESUMO

INTRODUCTION: Chronic oxidative stress is one of the major factors playing an important role in radiation-induced normal tissue injury. However, the role of oxidative stress in radiation-induced erectile dysfunction (ED) has not been fully investigated. Aims. To investigate role of oxidative stress after prostate-confined irradiation in a rat model of radiation-induced ED. METHODS: Fifty-four young adult male rats (10-12 weeks of age) were divided into age-matched sham radiotherapy (RT) and RT groups. Irradiated animals received prostate-confined radiation in a single 20 Gy fraction. MAIN OUTCOME MEASURES: Intracavernous pressure (ICP) measurements with cavernous nerve electrical stimulation were conducted at 2, 4, and 9 weeks following RT. The protein expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits (Nox4 and gp91(phox)), markers of oxidative DNA damage (8-hydroxy-2'-deoxyguanosine [8-OHdG]), lipid peroxidation (4-hydroxynonenal [4HNE]), and inflammatory response including inducible nitric oxide synthase, macrophage activation (ED-1), and nitrotyrosine, and endogenous antioxidant defense by nuclear factor erythroid 2-related factor (Nrf2) were evaluated in irradiated prostate tissue and corpora cavernosa (CC). In addition, we investigated the relationships between results of ICP/mean arterial pressure (MAP) ratios and expression level of oxidative stress markers. RESULTS: In the RT group, hemodynamic functional studies demonstrated a significant time-dependent decrease in ICP. Increased expression of Nox4, gp91(phox), 8-OHdG, and 4HNE were observed in the prostate and CC after RT. Similarly, expressions of inflammatory markers were significantly increased. There was a trend for increased Nrf2 after 4 weeks. ICP/MAP ratio negatively correlated with higher expression level of oxidative markers. CONCLUSION: NADPH oxidase activation and chronic oxidative stress were observed in irradiated prostate tissue and CC, which correlated with lower ICP/MAP ratio. Persistent inflammatory responses were also found in both tissues after RT. These findings suggest that oxidative stress plays a crucial role in the development of radiation-induced ED.


Assuntos
Disfunção Erétil/fisiopatologia , Estresse Oxidativo , Lesões Experimentais por Radiação/fisiopatologia , Radioterapia/efeitos adversos , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Disfunção Erétil/etiologia , Inflamação/metabolismo , Masculino , Análise por Pareamento , NADPH Oxidases/metabolismo , Ereção Peniana , Pênis/metabolismo , Pênis/fisiopatologia , Próstata/metabolismo , Próstata/fisiopatologia , Neoplasias da Próstata/radioterapia , Ratos , Ratos Sprague-Dawley
15.
Radiat Res ; 197(3): 209-217, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34860238

RESUMO

Cell line misidentification and contamination are major contributors to the reproducibility crisis in academic research. Authentication of cell lines provides assurances of the data generated; however, commercially available cells are often not subjected to rigorous identification testing. In this study, commercially available cell lines underwent testing to confirm cell identity and purity. The methods reported here outline the best practices for cell line authentication. Briefly, a commercially available primary rabbit aortic endothelial cell line was purchased for the intent of producing target proteins necessary for generating species-specific recombinant antibodies. These rabbit-specific antibodies would then be utilized for the development of in-house enzyme-linked immunosorbent assays (ELISA) to evaluate blood-based biomarkers of vascular injury after total-body irradiation. To authenticate the cell line, cell identity and purity were determined by single tandem repeat (STR) testing, flow cytometry, polymerase chain reaction (PCR), and cytochrome c oxidase subunit 1 (CO1) DNA Barcoding in-house and/or through commercial vendors. Fresh cells obtained from a New Zealand White rabbit (Charles River, Wilmington, DE) were used as a positive control. The results of STR and flow cytometry analyses indicated the cells were not contaminated with human or mouse cells, and that the cells were not of endothelial origin. PCR demonstrated that cells were also not of rabbit origin, which was further confirmed by a third-party vendor. An unopened vial of cells was submitted to another vendor for CO1 DNA Barcoding analysis, which identified the cells as being purely of bovine origin. Results revealed that despite purchase through a commercial vendor, the cell line marketed as primary rabbit aortic endothelial cells were of bovine origin. Purity analysis found cells were misidentified rather than contaminated. Further investigation to determine the cell type was not performed. The most cost-effective and efficient methodology for confirming cell line identity was found to be CO1 DNA Barcoding performed by a commercial vendor.


Assuntos
DNA , Células Endoteliais , Animais , Bovinos , Linhagem Celular , Camundongos , Reação em Cadeia da Polimerase , Coelhos , Reprodutibilidade dos Testes
16.
Life Sci Space Res (Amst) ; 35: 36-43, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36336367

RESUMO

More than 50 years after the Apollo missions ended, the National Aeronautical and Space Administration (NASA) and other international space agencies are preparing a return to the moon as a step towards deep space exploration. At doses ranging from a fraction of a Gray (Gy) to a few Gy, crew will be at risk for developing bone marrow failure associated with the hematopoietic subsyndrome of acute radiation syndrome (H-ARS) requiring pharmacological intervention to reduce risk to life and mission completion. Four medical countermeasures (MCM) in the colony stimulating factor class of drugs are now approved for treatment of myelosuppression associated with ARS. When taken in conjunction with antibiotics, fluids, antidiarrheals, antiemetics, antipyretics, and other treatments for symptomatic illness, the likelihood for recovery and mission completion can be greatly improved. The current review describes the performance and health risks of deep space flight, ionizing radiation exposure during crewed missions to the moon and Mars, and U.S. Food and Drug Administration (FDA)-approved medical interventions to treat ARS. With an expansion of human exploration missions beyond low Earth orbit (LEO), including near-term Lunar and future Mars missions, inclusion of MCMs to counteract ARS in the spaceflight kit will be critical for preserving crew health and performance.


Assuntos
Síndrome Aguda da Radiação , Contramedidas Médicas , Proteção Radiológica , Voo Espacial , Estados Unidos , Humanos , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/prevenção & controle , United States National Aeronautics and Space Administration
17.
Int J Radiat Biol ; 98(3): 346-366, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34129427

RESUMO

PURPOSE: As part of the special issue on 'Women in Science', this review offers a perspective on past and ongoing work in the field of normal (non-cancer) tissue radiation biology, highlighting the work of many of the leading contributors to this field of research. We discuss some of the hypotheses that have guided investigations, with a focus on some of the critical organs considered dose-limiting with respect to radiation therapy, and speculate on where the field needs to go in the future. CONCLUSIONS: The scope of work that makes up normal tissue radiation biology has and continues to play a pivotal role in the radiation sciences, ensuring the most effective application of radiation in imaging and therapy, as well as contributing to radiation protection efforts. However, despite the proven historical value of preclinical findings, recent decades have seen clinical practice move ahead with altered fractionation scheduling based on empirical observations, with little to no (or even negative) supporting scientific data. Given our current appreciation of the complexity of normal tissue radiation responses and their temporal variability, with tissue- and/or organ-specific mechanisms that include intra-, inter- and extracellular messaging, as well as contributions from systemic compartments, such as the immune system, the need to maintain a positive therapeutic ratio has never been more urgent. Importantly, mitigation and treatment strategies, whether for the clinic, emergency use following accidental or deliberate releases, or reducing occupational risk, will likely require multi-targeted approaches that involve both local and systemic intervention. From our personal perspective as five 'Women in Science', we would like to acknowledge and applaud the role that many female scientists have played in this field. We stand on the shoulders of those who have gone before, some of whom are fellow contributors to this special issue.


Assuntos
Neoplasias , Proteção Radiológica , Feminino , Humanos , Radiobiologia
18.
Radiat Res ; 197(5): 447-458, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35119453

RESUMO

BIO 300, a suspension of synthetic genistein nanoparticles, is being developed for mitigating the delayed effects of acute radiation exposure (DEARE). The purpose of the current study was to characterize the pharmacokinetic (PK) profile of BIO 300 administered as an oral or parenteral formulation 24 h after sham-irradiation, total-body irradiation (TBI) with 2.5-5.0% bone marrow sparing (TBI/BMx), or in nonirradiated sex-matched C57BL/6J mice and non-human primates (NHP). C57BL/6J mice were randomized to the following arms in two consecutive studies: sham-TBI [400 mg/kg, oral gavage (OG)], TBI/BM2.5 (400 mg/kg, OG), sham-TBI [200 mg/kg, subcutaneous (SC) injection], TBI/BM2.5 (200 mg/kg, SC), sham-TBI (100 mg/kg, SC), or nonirradiated [200 mg/kg, intramuscular (IM) injection]. The PK profile was also established in NHP exposed to TBI/BM5.0 (100 mg/kg, BID, OG). Genistein-aglycone serum concentrations were measured in all groups using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. The PK profile demonstrates 11% and 19% reductions in Cmax and AUC0-inf, respectively, among mice administered 400 mg/kg, OG, after TBI/BM2.5 compared to the sham-TBI control arm. Administration of 200 mg/kg SC in mice exposed to TBI/BM2.5 showed a 53% increase in AUC0-inf but a 28% reduction in Cmax compared to the sham-TBI mice. The relative bioavailability of the OG route compared to the SC and IM routes in mice was 9% and 7%, respectively. After the OG route, the dose-normalized AUC0-inf was 13.37 (ng.h/mL)/(mg/kg) in TBI/BM2.5 mice compared to 6.95 (ng.h/mL)/(mg/kg) in TBI/BM5.0 NHPs. Linear regression of apparent clearances and weights of mice and NHPs yielded an allometric coefficient of 1.06. Based on these data, the effect of TBI/BMx on BIO 300 PK is considered minimal. Future studies should use SC and IM routes to maximize drug exposure when administered postirradiation. The allometric coefficient is useful in predicting therapeutic drug dose regimens across species for drug approval under the FDA animal rule.


Assuntos
Genisteína , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Camundongos , Camundongos Endogâmicos C57BL , Primatas
19.
Int J Radiat Biol ; 97(sup1): S10-S18, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32924716

RESUMO

PURPOSE: Well-controlled ionizing radiation injury animal models for testing medical countermeasure efficacy require robust radiation physics and dosimetry to ensure accuracy of dose-delivery and reproducibility of the radiation dose-response relationship. The objective of this study was to establish a simple, convenient, robust and accurate technique for validating total body irradiation (TBI) exposure of the New Zealand White rabbit. METHODS: We use radiotherapy techniques such as computed tomography simulation and a 3 D-conformal radiation therapy treatment planning system (TPS) on three animals to comprehensively design and preplan a TBI technique for rabbits. We evaluate the requirement for bolus, treatment geometry, bilateral vs anterior-posterior treatment delivery, the agreement between monitor units calculated using the TPS vs a traditional hand calculation to the mid-plane, and resulting individual organ doses. RESULTS: The optimal technique irradiates animals on the left-decubitus position using two isocentric bilateral parallel-opposed 6 MV x-ray beams. Placement of a 5 mm bolus and 8.5 mm beam spoiler was shown to increase the dose to within ≤5 mm of the surface, improving dose homogeneity throughout the body of the rabbit. A simple hand calculation formalism, dependent only on mid-abdominal separation, could be used to calculate the number of monitor units (MUs) required to accurately deliver the prescribed dose to the animal. For the representative animal, the total body volume receiving > 95% of the dose, V95% > 99%, V100% > 95%, and V107% < 20%. The area of the body receiving >107% of the prescribed dose was mainly within the limbs, head, and around the lungs of the animal, where the smaller animal width reduces the x-ray attenuation. Individual organs were contoured by an experienced dosimetrist, and each received doses within 95-107% of the intended dose, with mean values ∼104%. Only the bronchus showed a maximal dose >107% (113%) due to the decreased attenuation of the lungs. To validate the technique, twenty animals were irradiated with four optically-stimulated luminescence dosimeters (OSLDs) placed on the surface of each animal (two on each side in the center of the radiation beam). The average dose over all animals was within <0.1% from intended values, with no animal receiving an average dose more than ±3.1% from prescription. CONCLUSION: The TBI technique developed in this pilot study was successfully used to establish the dose-response relationship for 45-day lethality across the dose-range to induce the hematopoietic-subsyndrome of the acute radiation syndrome (ARS).


Assuntos
Radiometria , Irradiação Corporal Total , Animais , Imagens de Fantasmas , Projetos Piloto , Coelhos , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
20.
Int J Radiat Biol ; 97(sup1): S19-S31, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31526203

RESUMO

PURPOSE: The purpose if this study was to develop a rabbit model of total body irradiation (TBI) -induced thrombocytopenia and coagulopathy across the dose-range which induces the hematopoietic subsyndrome of the acute radiation syndrome (H-ARS). METHODS: Twenty male New Zealand White rabbits were assigned to arms to receive 6-MV of TBI at a dose of 6.5, 7.5, 8.5 or 9.5 Gy. Animals were treated with moderate levels of supportive care including buprenorphine for pain management, antibiotics, antipyretics for rectal body temperature >104.8 °F, and fluids for signs of dehydration. Animals were closelyfollowed for up to 45 days after TBI for signs of major morbidity/mortality. Hematology and serum chemistry parameters were routinely monitored. Hemostasis parameters were analyzed prior to TBI, 2 and 6 hours post-TBI, and at the time of euthanasia. RESULTS: Animals developed the characteristic signs and symptoms of H-ARS during the first-week post TBI. Animals became thrombocytopenic with signs of severe acute anemia during the second week post TBI. Moribund animals presented with petechia and ecchymosis of the skin and generalized internal hemorrhage. Multiorgan dysfunction characterized by bone marrow failure, gastric ileus, acute renal toxicity, and liver abnormalities were common. Severe abnormalities in coagulation parameters were observed. CONCLUSIONS: The presentation of bone marrow failure and multiorogan injury associated with ARS in the New Zealand White rabbit model is consistent with that described in the canine, swine, non-human primate, and in humans. The hemorrhagic syndrome associated with the ARS in rabbits is characterized by thrombocytopenia and hemostasis dysfunction, which appear to underlie the development of multiorgan dysfunction following TBI to rabbits. Taken together, the rabbit recapitulates the pathogenesis of ARS in humans, and may present an alternative small animal model for medical countermeasure pilot efficacy screening, dose-finding and schedule optimization studies prior to moving into large animal models of TBI-induced ARS.


Assuntos
Síndrome Aguda da Radiação , Anemia , Trombocitopenia , Síndrome Aguda da Radiação/etiologia , Anemia/complicações , Animais , Transtornos da Insuficiência da Medula Óssea , Cães , Masculino , Coelhos , Suínos , Trombocitopenia/etiologia , Irradiação Corporal Total/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA