Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Drug Metab Dispos ; 52(6): 479-492, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38286637

RESUMO

Small molecule kinase inhibitors are one of the fastest growing classes of drugs, which are approved by the US Food and Drug Administration (FDA) for cancer and noncancer indications. As of September 2023, there were over 70 FDA-approved small molecule kinase inhibitors on the market, 42 of which were approved in the past five years (2018-2023). This minireview discusses recent advances in our understanding of the pharmacology, metabolism, and toxicity profiles of recently approved kinase inhibitors with a central focus on tyrosine kinase inhibitors (TKIs). In this minireview we discuss the most common therapeutic indications and molecular target(s) of kinase inhibitors FDA approved 2018-2023. We also describe unique aspects of the metabolism, bioactivation, and drug-drug interaction (DDI) potential of kinase inhibitors; discuss drug toxicity concerns related to kinase inhibitors, such as drug-induced liver injury; and highlight clinical outcomes and challenges relevant to TKI therapy. Case examples are provided for common TKI targets, metabolism pathways, DDI potential, and risks for serious adverse drug reactions. The minireview concludes with a discussion of perspectives on future research to optimize TKI therapy to maximize efficacy and minimize drug toxicity. SIGNIFICANCE STATEMENT: This minireview highlights important aspects of the clinical pharmacology and toxicology of small molecule kinase inhibitors FDA approved 2018-2023. We describe key advances in the therapeutic indications and molecular targets of TKIs. The major metabolism pathways and toxicity profiles of recently approved TKIs are discussed. Clinically relevant case examples are provided that demonstrate the risk for hepatotoxic drug interactions involving TKIs and coadministered drugs.


Assuntos
Aprovação de Drogas , Interações Medicamentosas , Inibidores de Proteínas Quinases , United States Food and Drug Administration , Humanos , Estados Unidos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacocinética , Interações Medicamentosas/fisiologia , Redes e Vias Metabólicas/efeitos dos fármacos , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Antineoplásicos/efeitos adversos
2.
Drug Metab Dispos ; 52(6): 508-515, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38286636

RESUMO

Cannabidiol (CBD) is a pharmacologically active metabolite of cannabis that is US Food and Drug Administration approved to treat seizures associated with Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex in children aged 1 year and older. During clinical trials, CBD caused dose-dependent hepatocellular toxicity at therapeutic doses. The risk for toxicity was increased in patients taking valproate, another hepatotoxic antiepileptic drug, through an unknown mechanism. With the growing popularity of CBD in the consumer market, an improved understanding of the safety risks associated with CBD is needed to ensure public health. This review details current efforts to describe CBD pharmacokinetics and mechanisms of hepatotoxicity using both pharmacokinetic models and in vitro models of the liver. In addition, current evidence and knowledge gaps related to intracellular mechanisms of CBD-induced hepatotoxicity are described. The authors propose future directions that combine systems-based models with markers of CBD-induced hepatotoxicity to understand how CBD pharmacokinetics may influence the adverse effect profile and risk of liver injury for those taking CBD. SIGNIFICANCE STATEMENT: This review describes current pharmacokinetic modeling approaches to capture the metabolic clearance and safety profile of cannabidiol (CBD). CBD is an increasingly popular natural product and US Food and Drug Administration-approved antiepileptic drug known to cause clinically significant enzyme-mediated drug interactions and hepatotoxicity at therapeutic doses. CBD metabolism, pharmacokinetics, and putative mechanisms of CBD-induced liver injury are summarized from available preclinical data to inform future modeling efforts for understanding CBD toxicity.


Assuntos
Anticonvulsivantes , Canabidiol , Doença Hepática Induzida por Substâncias e Drogas , Modelos Biológicos , Canabidiol/farmacocinética , Canabidiol/efeitos adversos , Humanos , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Animais , Fígado/metabolismo , Fígado/efeitos dos fármacos
3.
Drug Metab Rev ; 55(4): 301-342, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37737116

RESUMO

This annual review is the eighth of its kind since 2016 (Baillie et al. 2016, Khojasteh et al. 2017, Khojasteh et al. 2018, Khojasteh et al. 2019, Khojasteh et al. 2020, Khojasteh et al. 2021, Khojasteh et al. 2022). Our objective is to explore and share articles which we deem influential and significant in the field of biotransformation.


Assuntos
Biotransformação , Humanos
4.
Drug Metab Dispos ; 51(10): 1238-1253, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37419681

RESUMO

Interindividual variability in drug metabolism can significantly affect drug concentrations in the body and subsequent drug response. Understanding an individual's drug metabolism capacity is important for predicting drug exposure and developing precision medicine strategies. The goal of precision medicine is to individualize drug treatment for patients to maximize efficacy and minimize drug toxicity. While advances in pharmacogenomics have improved our understanding of how genetic variations in drug-metabolizing enzymes (DMEs) affect drug response, nongenetic factors are also known to influence drug metabolism phenotypes. This minireview discusses approaches beyond pharmacogenetic testing to phenotype DMEs-particularly the cytochrome P450 enzymes-in clinical settings. Several phenotyping approaches have been proposed: traditional approaches include phenotyping with exogenous probe substrates and the use of endogenous biomarkers; newer approaches include evaluating circulating noncoding RNAs and liquid biopsy-derived markers relevant to DME expression and function. The goals of this minireview are to 1) provide a high-level overview of traditional and novel approaches to phenotype individual drug metabolism capacity, 2) describe how these approaches are being applied or can be applied to pharmacokinetic studies, and 3) discuss perspectives on future opportunities to advance precision medicine in diverse populations. SIGNIFICANCE STATEMENT: This minireview provides an overview of recent advances in approaches to characterize individual drug metabolism phenotypes in clinical settings. It highlights the integration of existing pharmacokinetic biomarkers with novel approaches; also discussed are current challenges and existing knowledge gaps. The article concludes with perspectives on the future deployment of a liquid biopsy-informed physiologically based pharmacokinetic strategy for patient characterization and precision dosing.


Assuntos
Sistema Enzimático do Citocromo P-450 , Medicina de Precisão , Humanos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Taxa de Depuração Metabólica , Biomarcadores/metabolismo
5.
Circ Res ; 128(12): 1973-1987, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34110908

RESUMO

Novel targeted cancer therapies have revolutionized oncology therapies, but these treatments can have cardiovascular complications, which include heterogeneous cardiac, metabolic, and vascular sequelae. Vascular side effects have emerged as important considerations in both cancer patients undergoing active treatment and cancer survivors. Here, we provide an overview of vascular effects of cancer therapies, focusing on small-molecule kinase inhibitors and specifically inhibitors of BTK (Bruton tyrosine kinase), which have revolutionized treatment and prognosis for B-cell malignancies. Cardiovascular side effects of BTK inhibitors include atrial fibrillation, increased risk of bleeding, and hypertension, with the former 2 especially providing a treatment challenge for the clinician. Cardiovascular complications of small-molecule kinase inhibitors can occur through either on-target (targeting intended target kinase) or off-target kinase inhibition. We will review these concepts and focus on the case of BTK inhibitors, highlight the emerging data suggesting an off-target effect that may provide insights into development of arrhythmias, specifically atrial fibrillation. We believe that cardiac and vascular sequelae of novel targeted cancer therapies can provide insights into human cardiovascular biology.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Antineoplásicos/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Leucemia de Células B/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos , Antineoplásicos/uso terapêutico , Arritmias Cardíacas/induzido quimicamente , Fibrilação Atrial/induzido quimicamente , Sobreviventes de Câncer , Hemorragia/induzido quimicamente , Humanos , Hipertensão/induzido quimicamente , Terapia de Alvo Molecular/efeitos adversos , Terapia de Alvo Molecular/métodos , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
6.
J Appl Toxicol ; 43(5): 680-693, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36372912

RESUMO

E-cigarette, or vaping product use-associated lung injury (EVALI), is a severe respiratory disorder that caused a sudden outbreak of hospitalized young people in 2019. Using cannabis oil containing vaping products, including vitamin E acetate contaminants, was found to be strongly associated with EVALI. However, the underlying tissue impacts of the condition are still largely unknown. Here, we focused on the vehicle cannabinoid oil (CBD oil) and contaminant vitamin E acetate (VEA) effects on airway epithelial cells. Primary human bronchial epithelial (HBE) cultures were exposed to e-liquid aerosols that contained CBD oil and VEA in combination or the common e-liquid components PG/VG with and without nicotine. Cell viability analysis indicated dramatically increased cell death counts after 3 days of CBD exposure, and this effect was even higher after CBD + VEA exposure. Microscopic examination of the cultures revealed cannabinoid and VEA depositions on the epithelial surfaces and cannabinoid accumulation in exposed cells, followed by cell death. These observations were supported by proteomic analysis of the cell secretions that exhibited increases in known markers of airway epithelial toxicity, such as xenobiotic enzymes, factors related to oxidative stress response, and cell death indicators. Overall, our study provides insights into the association between cannabinoid oil and vitamin E acetate vaping and lung injury. Collectively, our results suggest that the adherent accumulation of CBD oil on airway surfaces and the cellular uptake of both CBD oil- and VEA-containing condensates cause elevated metabolic stress, leading to increased cell death rates in human airway epithelial cultures.


Assuntos
Canabinoides , Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar , Vaping , Humanos , Adolescente , Canabinoides/toxicidade , Vaping/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Proteômica , Dronabinol/toxicidade , Aerossóis e Gotículas Respiratórios , Vitamina E/análise , Vitamina E/toxicidade , Epitélio , Acetatos/toxicidade
7.
Drug Metab Rev ; 54(3): 207-245, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35815654

RESUMO

Biotransformation field is constantly evolving with new molecular structures and discoveries of metabolic pathways that impact efficacy and safety. Recent review by Kramlinger et al. (2022) nicely captures the future (and the past) of highly impactful science of biotransformation (see the first article). Based on the selected articles, this review was categorized into three sections: (1) new modalities biotransformation, (2) drug discovery biotransformation, and (3) drug development biotransformation (Table 1).


Assuntos
Descoberta de Drogas , Biotransformação , Humanos , Inativação Metabólica
8.
Drug Metab Rev ; 54(3): 246-281, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35876116

RESUMO

This year's review on bioactivation and reactivity began as a part of the annual review on biotransformation and bioactivation led by Cyrus Khojasteh (see references). Increased contributions from experts in the field led to the development of a stand alone edition for the first time this year focused specifically on bioactivation and reactivity. Our objective for this review is to highlight and share articles which we deem influential and significant regarding the development of covalent inhibitors, mechanisms of reactive metabolite formation, enzyme inactivation, and drug safety. Based on the selected articles, we created two sections: (1) reactivity and enzyme inactivation, and (2) bioactivation mechanisms and safety (Table 1). Several biotransformation experts have contributed to this effort from academic and industry settings.[Table: see text].


Assuntos
Microssomos Hepáticos , Biotransformação , Humanos , Microssomos Hepáticos/metabolismo
9.
Chem Res Toxicol ; 35(9): 1467-1481, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36048877

RESUMO

Masitinib is a small molecule tyrosine kinase inhibitor under investigation for the treatment of amyotrophic lateral sclerosis, mastocytosis, and COVID-19. Hepatotoxicity has been reported in some patients while taking masitinib. The liver injury is thought to involve hepatic metabolism of masitinib by cytochrome P450 (P450) enzymes to form chemically reactive, potentially toxic metabolites. The goal of the current investigation was to determine the P450 enzymes involved in the metabolic activation of masitinib in vitro. In initial studies, masitinib (30 µM) was incubated with pooled human liver microsomes in the presence of NADPH and potassium cyanide to trap reactive iminium ion metabolites as cyano adducts. Masitinib metabolites and cyano adducts were analyzed using reversed-phase liquid chromatography-tandem mass spectrometry. The primary active metabolite, N-desmethyl masitinib (M485), and several oxygenated metabolites were detected along with four reactive metabolite cyano adducts (MCN510, MCN524, MCN526, and MCN538). To determine which P450 enzymes were involved in metabolite formation, reaction phenotyping experiments were conducted by incubation of masitinib (2 µM) with a panel of recombinant human P450 enzymes and by incubation of masitinib with human liver microsomes in the presence of P450-selective chemical inhibitors. In addition, enzyme kinetic assays were conducted to determine the relative kinetic parameters (apparent Km and Vmax) of masitinib metabolism and cyano adduct formation. Integrated analysis of the results from these experiments indicates that masitinib metabolic activation is catalyzed primarily by P450 3A4 and 2C8, with minor contributions from P450 3A5 and 2D6. These findings provide further insight into the pathways involved in the generation of reactive, potentially toxic metabolites of masitinib. Future studies are needed to evaluate the impact of masitinib metabolism on the toxicity of the drug in vivo.


Assuntos
COVID-19 , Ativação Metabólica , Benzamidas , Catálise , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , NADP/metabolismo , Piperidinas , Cianeto de Potássio , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piridinas , Tiazóis
10.
Chem Res Toxicol ; 35(5): 792-806, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35484684

RESUMO

Sunitinib is an orally administered tyrosine kinase inhibitor associated with idiosyncratic hepatotoxicity; however, the mechanisms of this toxicity remain unclear. We have previously shown that cytochromes P450 1A2 and 3A4 catalyze sunitinib metabolic activation via oxidative defluorination leading to a chemically reactive, potentially toxic quinoneimine, trapped as a glutathione (GSH) conjugate (M5). The goals of this study were to determine the impact of interindividual variability in P450 1A and 3A activity on sunitinib bioactivation to the reactive quinoneimine and sunitinib N-dealkylation to the primary active metabolite N-desethylsunitinib (M1). Experiments were conducted in vitro using single-donor human liver microsomes and human hepatocytes. Relative sunitinib metabolite levels were measured by liquid chromatography-tandem mass spectrometry. In human liver microsomes, the P450 3A inhibitor ketoconazole significantly reduced M1 formation compared to the control. The P450 1A2 inhibitor furafylline significantly reduced defluorosunitinib (M3) and M5 formation compared to the control but had minimal effect on M1. In CYP3A5-genotyped human liver microsomes from 12 individual donors, M1 formation was highly correlated with P450 3A activity measured by midazolam 1'-hydroxylation, and M3 and M5 formation was correlated with P450 1A2 activity estimated by phenacetin O-deethylation. M3 and M5 formation was also associated with P450 3A5-selective activity. In sandwich-cultured human hepatocytes, the P450 3A inducer rifampicin significantly increased M1 levels. P450 1A induction by omeprazole markedly increased M3 formation and the generation of a quinoneimine-cysteine conjugate (M6) identified as a downstream metabolite of M5. The nonselective P450 inhibitor 1-aminobenzotriazole reduced each of these metabolites (M1, M3, and M6). Collectively, these findings indicate that P450 3A activity is a key determinant of sunitinib N-dealkylation to the active metabolite M1, and P450 1A (and potentially 3A5) activity influences sunitinib bioactivation to the reactive quinoneimine metabolite. Accordingly, modulation of P450 activity due to genetic and/or nongenetic factors may impact the risk of sunitinib-associated toxicities.


Assuntos
Citocromo P-450 CYP3A , Microssomos Hepáticos , Ativação Metabólica , Cromatografia Líquida , Citocromo P-450 CYP3A/metabolismo , Glutationa/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Sunitinibe/metabolismo , Sunitinibe/farmacologia
11.
Drug Metab Rev ; 53(3): 384-433, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33910427

RESUMO

This annual review is the sixth of its kind since 2016 (see references). Our objective is to explore and share articles which we deem influential and significant in the field of biotransformation and bioactivation. These fields are constantly evolving with new molecular structures and discoveries of corresponding pathways for metabolism that impact relevant drug development with respect to efficacy and safety. Based on the selected articles, we created three sections: (1) drug design, (2) metabolites and drug metabolizing enzymes, and (3) bioactivation and safety (Table 1). Unlike in years past, more biotransformation experts have joined and contributed to this effort while striving to maintain a balance of authors from academic and industry settings.[Table: see text].


Assuntos
Biotransformação , Humanos
12.
Drug Metab Dispos ; 49(10): 882-891, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34330718

RESUMO

Cannabidiol (CBD) is a naturally occurring nonpsychotoxic phytocannabinoid that has gained increasing attention as a popular consumer product and for its use in Food and Drug Administration-approved Epidiolex (CBD oral solution) for the treatment of Lennox-Gastaut syndrome and Dravet syndrome. CBD was previously reported to be metabolized primarily by CYP2C19 and CYP3A4, with minor contributions from UDP-glucuronosyltransferases. 7-Hydroxy-CBD (7-OH-CBD) is the primary active metabolite with equipotent activity compared with CBD. Given the polymorphic nature of CYP2C19, we hypothesized that variable CYP2C19 expression may lead to interindividual differences in CBD metabolism to 7-OH-CBD. The objectives of this study were to further characterize the roles of cytochrome P450 enzymes in CBD metabolism, specifically to the active metabolite 7-OH-CBD, and to investigate the impact of CYP2C19 polymorphism on CBD metabolism in genotyped human liver microsomes. The results from reaction phenotyping experiments with recombinant cytochrome P450 enzymes and cytochrome P450-selective chemical inhibitors indicated that both CYP2C19 and CYP2C9 are capable of CBD metabolism to 7-OH-CBD. CYP3A played a major role in CBD metabolic clearance via oxidation at sites other than the 7-position. In genotyped human liver microsomes, 7-OH-CBD formation was positively correlated with CYP2C19 activity but was not associated with CYP2C19 genotype. In a subset of single-donor human liver microsomes with moderate to low CYP2C19 activity, CYP2C9 inhibition significantly reduced 7-OH-CBD formation, suggesting that CYP2C9 may play a greater role in CBD 7-hydroxylation than previously thought. Collectively, these data indicate that both CYP2C19 and CYP2C9 are important contributors in CBD metabolism to the active metabolite 7-OH-CBD. SIGNIFICANCE STATEMENT: This study demonstrates that both CYP2C19 and CYP2C9 are involved in CBD metabolism to the active metabolite 7-OH-CBD and that CYP3A4 is a major contributor to CBD metabolism through pathways other than 7-hydroxylation. 7-OH-CBD formation was associated with human liver microsomal CYP2C19 activity, but not CYP2C19 genotype, and CYP2C9 was found to contribute significantly to 7-OH-CBD generation. These findings have implications for patients taking CBD who may be at risk for clinically important cytochrome P450-mediated drug interactions.


Assuntos
Canabidiol , Citocromo P-450 CYP3A/metabolismo , Anticonvulsivantes/farmacocinética , Biotransformação , Canabidiol/análogos & derivados , Canabidiol/farmacocinética , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Interações Medicamentosas/fisiologia , Ativação Enzimática , Perfilação da Expressão Gênica , Humanos , Hidroxilação/fisiologia , Taxa de Depuração Metabólica , Microssomos Hepáticos/metabolismo
13.
Drug Metab Dispos ; 49(3): 233-244, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33376146

RESUMO

O-Dealkylation of the tyrosine kinase inhibitor lapatinib by cytochrome P450 3A enzymes is implicated in the development of lapatinib-induced hepatotoxicity. Conjugative metabolism of debenzylated lapatinib (M1) via glucuronidation and sulfation is thought to be a major detoxication pathway for lapatinib in preclinical species (rat and dog), limiting formation of the quinoneimine reactive metabolite. Glucuronidation of M1 by human recombinant UDP-glucuronosyltransferases (UGTs) has been reported in vitro; however, the relative UGT enzyme contributions are unknown, and the interspecies differences in the conjugation versus bioactivation pathways of M1 have not been fully elucidated. In the present study, reaction phenotyping experiments using human recombinant UGT enzymes and enzyme-selective chemical inhibitors demonstrated that UGT1A1 was the major hepatic UGT enzyme involved in lapatinib M1 glucuronidation. Formation of the M1-glucuronide by human liver microsomes from UGT1A1-genotyped donors was significantly correlated with UGT1A1 activity as measured by 17ß-estradiol 3-glucuronidation (R 2 = 0.90). Interspecies differences were found in the biotransformation of M1 in human, rat, and dog liver microsomal and 9000g supernatant (S9) fractions via glucuronidation, sulfation, aldehyde oxidase-mediated oxidation, and bioactivation to the quinoneimine trapped as a glutathione (GSH) conjugate. Moreover, we demonstrated the sequential metabolism of lapatinib in primary human hepatocytes to the M1-glucuronide, M1-sulfate, and quinoneimine-GSH conjugate. M1 glucuronidation was highly correlated with the rates of M1 formation, suggesting that O-dealkylation may be the rate-limiting step in lapatinib biotransformation. Interindividual variability in the formation and clearance pathways of lapatinib M1 likely influences the hepatic exposure to reactive metabolites and may affect the risk for hepatotoxicity. SIGNIFICANCE STATEMENT: We used an integrated approach to examine the interindividual and interspecies differences in detoxication versus bioactivation pathways of lapatinib, which is associated with idiosyncratic hepatotoxicity. In addition to cytochrome P450 (P450)-mediated bioactivation, we report that multiple non-P450 pathways are involved in the biotransformation of the primary phenolic metabolite of lapatinib in vitro, including glucuronidation, sulfation, and aldehyde oxidase mediated oxidation. UGT1A1 was identified as the major hepatic enzyme involved in debenzylated lapatinib glucuronidation, which may limit hepatic exposure to the potentially toxic quinoneimine.


Assuntos
Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Lapatinib/metabolismo , Microssomos Hepáticos/metabolismo , Adulto , Biotransformação/efeitos dos fármacos , Biotransformação/fisiologia , Catálise/efeitos dos fármacos , Feminino , Humanos , Inativação Metabólica/efeitos dos fármacos , Inativação Metabólica/fisiologia , Lapatinib/farmacologia , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia
14.
Drug Metab Rev ; 52(3): 333-365, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32645275

RESUMO

Biotransformation is one of the main mechanisms used by the body to eliminate drugs. As drug molecules become more complicated, the involvement of drug metabolizing enzymes increases beyond those that are typically studied, such as the cytochrome P450 enzymes. In this review, we try to capture the many outstanding articles that were published in the past year in the field of biotransformation (see Table 1). We have divided the articles into two categories of (1) metabolites and drug metabolizing enzymes, and (2) bioactivation and safety. This annual review is the fifth of its kind since 2016 (Baillie et al. 2016; Khojasteh et al. 2017, 2018, 2019). This effort in itself also continues to evolve. We have followed the same format we used in previous years in terms of the selection of articles and the authoring of each section. I am pleased of the continued support of Rietjens, Miller, Zhang, Driscoll and Mitra to this review. We would like to welcome Klarissa D. Jackson as a new author for this year's issue. We strive to maintain a balance of authors from academic and industry settings. We would be pleased to hear your opinions of our commentary, and we extend an invitation to anyone who would like to contribute to a future edition of this review. Cyrus Khojasteh, on behalf of the authors.


Assuntos
Biotransformação , Preparações Farmacêuticas/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos
15.
Xenobiotica ; 50(2): 209-222, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30902024

RESUMO

1. Meperidine is an opioid analgesic that undergoes N-demethylation to form the neurotoxic metabolite normeperidine. Previous studies indicate that meperidine N-demethylation is catalyzed by cytochrome P450 2B6 (CYP2B6), CYP3A4, and CYP2C19.2. The purpose of this study was to examine the relative P450 contributions to meperidine N-demethylation and to evaluate the effect of CYP2C19 polymorphism on normeperidine generation. Experiments were performed using recombinant P450 enzymes, selective chemical inhibitors, enzyme kinetic assays, and correlation analysis with individual CYP2C19-genotyped human liver microsomes.3. The catalytic efficiency (kcat/Km) for meperidine N-demethylation was similar between recombinant CYP2B6 and CYP2C19, but markedly lower by CYP3A4.4. In CYP2C19-genotyped human liver microsomes, normeperidine formation was significantly correlated with CYP2C19 activity (S-mephenytoin 4´-hydroxylation).5. CYP2C19 inhibitor (+)-N-3-benzylnirvanol and CYP3A inhibitor ketoconazole significantly reduced microsomal normeperidine generation by an individual donor with high CYP2C19 activity, whereas donors with lower CYP2C19 activity were sensitive to inhibition by ketoconazole but not benzylnirvanol.6. These findings demonstrate that the relative CYP3A4, CYP2B6, and CYP2C19 involvement in meperidine N-demethylation depends on the enzyme activities in individual human liver microsomal samples. CYP2C19 is likely an important contributor to normeperidine generation in individuals with high CYP2C19 activity, but additional factors influence inter-individual metabolite accumulation.


Assuntos
Inibidores da Colinesterase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Meperidina/análogos & derivados , Citocromo P-450 CYP2C19/metabolismo , Desmetilação , Humanos , Meperidina/metabolismo , Mefenitoína
16.
Drug Metab Dispos ; 47(11): 1257-1269, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31492693

RESUMO

Lapatinib is a dual tyrosine kinase inhibitor associated with rare but potentially severe idiosyncratic hepatotoxicity. We have previously shown that cytochromes P450 CYP3A4 and CYP3A5 quantitatively contribute to lapatinib bioactivation, leading to formation of a reactive, potentially toxic quinone imine. CYP3A5 is highly polymorphic; however, the impact of CYP3A5 polymorphism on lapatinib metabolism has not been fully established. The goal of this study was to determine the effect of CYP3A5 genotype and individual variation in CYP3A activity on the metabolic activation of lapatinib using human-relevant in vitro systems. Lapatinib metabolism was examined using CYP3A5-genotyped human liver microsomes and cryopreserved human hepatocytes. CYP3A and CYP3A5-selective activities were measured in liver tissues using probe substrates midazolam and T-5 (T-1032), respectively, to evaluate the correlation between enzymatic activity and lapatinib metabolite formation. Drug metabolites were measured by high-performance liquid chromatography-tandem mass spectrometry. Further, the relative contributions of CYP3A4 and CYP3A5 to lapatinib O-debenzylation were estimated using selective chemical inhibitors of CYP3A. The results from this study demonstrated that lapatinib O-debenzylation and quinone imine-GSH conjugate formation were highly correlated with hepatic CYP3A activity, as measured by midazolam 1'-hydroxylation. CYP3A4 played a dominant role in lapatinib bioactivation in all liver tissues evaluated. The CYP3A5 contribution to lapatinib bioactivation varied by individual donor and was dependent on CYP3A5 genotype and activity. CYP3A5 contributed approximately 20%-42% to lapatinib O-debenzylation in livers from CYP3A5 expressers. These findings indicate that individual CYP3A activity, not CYP3A5 genotype alone, is a key determinant of lapatinib bioactivation and likely influences exposure to reactive metabolites. SIGNIFICANCE STATEMENT: This study is the first to examine the effect of CYP3A5 genotype, total CYP3A activity, and CYP3A5-selective activity on lapatinib bioactivation in individual human liver tissues. The results of this investigation indicate that lapatinib bioactivation via oxidative O-debenzylation is highly correlated with total hepatic CYP3A activity, and not CYP3A5 genotype alone. These findings provide insight into the individual factors, namely, CYP3A activity, that may affect individual exposure to reactive, potentially toxic metabolites of lapatinib.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Lapatinib/farmacocinética , Ativação Metabólica , Adulto , Idoso , Citocromo P-450 CYP3A/genética , Inibidores do Citocromo P-450 CYP3A/farmacologia , Feminino , Genótipo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade
17.
Chem Res Toxicol ; 31(2): 137-144, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29272108

RESUMO

Topoisomerase II is a critical enzyme in replication, transcription, and the regulation of chromatin topology. Several anticancer agents target topoisomerases in order to disrupt cell growth. Cannabidiol is a major non-euphoriant, pharmacologically active component of cannabis. Previously, we examined the cannabidiol derivative HU-331 in order to characterize the mechanism of the compound against topoisomerase IIα. In this current work, we explore whether cannabidiol (CBD) impacts topoisomerase II activity, and we additionally examine the activity of these compounds against topoisomerase IIß. CBD does not appear to strongly inhibit DNA relaxation and is not a poison of topoisomerase II DNA cleavage. However, oxidation of CBD allows this compound to inhibit DNA relaxation by topoisomerase IIα and ß without poisoning DNA cleavage. Additionally, we found that oxidized CBD, similar to HU-331, inhibits ATP hydrolysis and can result in inactivation of topoisomerase IIα and ß. We also determined that oxidized CBD and HU-331 are both able to stabilize the N-terminal clamp of topoisomerase II. Taken together, we conclude that while CBD does not have significant activity against topoisomerase II, both oxidized CBD and HU-331 are active against both isoforms of topoisomerase II. We hypothesize that oxidized CBD and HU-331 act against the enzyme through interaction with the N-terminal ATPase domain. According to the model we propose, topoisomerase II inactivation may result from a decrease in the ability of the enzyme to bind to DNA when the compound is bound to the N-terminus.


Assuntos
Canabidiol/análogos & derivados , Canabidiol/farmacologia , DNA/efeitos dos fármacos , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Inibidores da Topoisomerase II/farmacologia , Canabidiol/química , DNA/metabolismo , Clivagem do DNA , DNA Topoisomerases Tipo II/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Oxirredução , Plasmídeos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Inibidores da Topoisomerase II/química
18.
Chem Res Toxicol ; 31(7): 570-584, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-29847931

RESUMO

Sunitinib is a multitargeted tyrosine kinase inhibitor associated with idiosyncratic hepatotoxicity. The mechanisms of this toxicity are unknown. We hypothesized that sunitinib undergoes metabolic activation to form chemically reactive, potentially toxic metabolites which may contribute to development of sunitinib-induced hepatotoxicity. The purpose of this study was to define the role of cytochrome P450 (P450) enzymes in sunitinib bioactivation. Metabolic incubations were performed using individual recombinant P450s, human liver microsomal fractions, and P450-selective chemical inhibitors. Glutathione (GSH) and dansylated GSH were used as trapping agents to detect reactive metabolite formation. Sunitinib metabolites were analyzed by liquid chromatography-tandem mass spectrometry. A putative quinoneimine-GSH conjugate (M5) of sunitinib was detected from trapping studies with GSH and dansyl-GSH in human liver microsomal incubations, and M5 was formed in an NADPH-dependent manner. Recombinant P450 1A2 generated the highest levels of defluorinated sunitinib (M3) and M5, with less formation by P450 3A4 and 2D6. P450 3A4 was the major enzyme forming the primary active metabolite N-desethylsunitinib (M1). In human liver microsomal incubations, P450 3A inhibitor ketoconazole reduced formation of M1 by 88%, while P450 1A2 inhibitor furafylline decreased generation of M5 by 62% compared to control levels. P450 2D6 and P450 3A inhibition also decreased M5 by 54 and 52%, respectively, compared to control. In kinetic assays, recombinant P450 1A2 showed greater efficiency for generation of M3 and M5 compared to that of P450 3A4 and 2D6. Moreover, M5 formation was 2.7-fold more efficient in human liver microsomal preparations from an individual donor with high P450 1A2 activity compared to a donor with low P450 1A2 activity. Collectively, these data suggest that P450 1A2 and 3A4 contribute to oxidative defluorination of sunitinib to generate a reactive, potentially toxic quinoneimine. Factors that alter P450 1A2 and 3A activity may affect patient risk for sunitinib toxicity.


Assuntos
Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/metabolismo , Sunitinibe/metabolismo , Biocatálise , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP1A2/química , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Glutationa/química , Humanos , Cetoconazol/química , Cetoconazol/metabolismo , Cinética , Microssomos Hepáticos/metabolismo , Quinonas/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrofotometria Ultravioleta , Sunitinibe/análise , Espectrometria de Massas em Tandem
19.
Int J Mol Sci ; 19(8)2018 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-30103502

RESUMO

Tyrosine kinase inhibitors are a rapidly expanding class of molecular targeted therapies for the treatment of various types of cancer and other diseases. An increasing number of clinically important small molecule tyrosine kinase inhibitors have been shown to undergo cytochrome P450-mediated bioactivation to form chemically reactive, potentially toxic products. Metabolic activation of tyrosine kinase inhibitors is proposed to contribute to the development of serious adverse reactions, including idiosyncratic hepatotoxicity. This article will review recent findings and ongoing studies to elucidate the link between drug metabolism and tyrosine kinase inhibitor-associated hepatotoxicity.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases , Ativação Metabólica , Animais , Humanos , Neoplasias/enzimologia , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico
20.
Drug Metab Dispos ; 44(10): 1584-97, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27450182

RESUMO

Metabolic activation of the dual-tyrosine kinase inhibitor lapatinib by cytochromes CYP3A4 and CYP3A5 has been implicated in lapatinib-induced idiosyncratic hepatotoxicity; however, the relative enzyme contributions have not been established. The objective of this study was to examine the roles of CYP3A4 and CYP3A5 in lapatinib bioactivation leading to a reactive, potentially toxic quinoneimine. Reaction phenotyping experiments were performed using individual human recombinant P450 enzymes and P450-selective chemical inhibitors. Lapatinib metabolites and quinoneimine-glutathione (GSH) adducts were analyzed using liquid chromatography-tandem mass spectrometry. A screen of cDNA-expressed P450s confirmed that CYP3A4 and CYP3A5 are the primary enzymes responsible for quinoneimine-GSH adduct formation using lapatinib or O-dealkylated lapatinib as the substrate. The mean kinetic parameters (Km and kcat) of lapatinib O-dealkylation revealed that CYP3A4 was 5.2-fold more efficient than CYP3A5 at lapatinib O-dealkylation (CYP3A4 kcat/Km = 6.8 µM(-1) min(-1) versus CYP3A5 kcat/Km = 1.3 µM(-1) min(-1)). Kinetic analysis of GSH adduct formation indicated that CYP3A4 was also 4-fold more efficient at quinoneimine-GSH adduct formation as measured by kcat (maximum relative GSH adduct levels)/Km (CYP3A4 = 0.0082 vs. CYP3A5 = 0.0021). In human liver microsomal (HLM) incubations, CYP3A4-selective inhibitors SR-9186 and CYP3cide reduced formation of GSH adducts by 78% and 72%, respectively, compared with >90% inhibition by the pan-CYP3A inhibitor ketoconazole. The 16%-22% difference between CYP3A- and CYP3A4-selective inhibition indicates the involvement of remaining CYP3A5 activity in generating reactive metabolites from lapatinib in pooled HLMs. Collectively, these findings support the conclusion that both CYP3A4 and CYP3A5 are quantitatively important contributors to lapatinib bioactivation.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Quinazolinas/farmacocinética , Alquilação , Biocatálise , Cromatografia Líquida , Citocromo P-450 CYP3A/efeitos dos fármacos , Inibidores do Citocromo P-450 CYP3A/farmacologia , Glutationa/metabolismo , Humanos , Lapatinib , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA