Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Immunol Cell Biol ; 91(1): 32-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23295415

RESUMO

Somatic, also termed adult, stem cells are highly attractive biomedical cell candidates because of their extensive replication potential and functional multilineage differentiation capacity. They can be used for drug and toxicity screenings in preclinical studies, as in vitro model to study differentiation or for regenerative medicine to aid in the repair of tissues or replace tissues that are lost upon disease, injury or ageing. Multipotent adult progenitor cells (MAPCs) and mesenchymal stem cells (MSCs) are two types of adult stem cells derived from bone marrow that are currently being used clinically for tissue regeneration and for their immunomodulatory and trophic effects. This review will give an overview of the phenotypic and functional differences between human MAPCs and MSCs, with a strong emphasis on their immunological characteristics. Finally, we will discuss the clinical studies in which MSCs and MAPCs are already used.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/imunologia , Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Envelhecimento/imunologia , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Humanos , Medicina Regenerativa/métodos
3.
Front Immunol ; 14: 1227126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901250

RESUMO

Brain tumors are the leading cause of morbidity and mortality related to cancer in children, where high-grade glioma harbor the worst prognosis. It has become obvious that pediatric glioma differs significantly from their adult counterparts, rendering extrapolations difficult. Curative options for several types of glioma are lacking, albeit ongoing research efforts and clinical trials. As already proven in the past, inter- and intratumoral heterogeneity plays an important role in the resistance to therapy and thus implicates morbidity and mortality for these patients. However, while less studied, the tumor micro-environment (TME) adds another level of heterogeneity. Knowledge gaps exist on how the TME interacts with the tumor cells and how the location of the various cell types in the TME influences tumor growth and the response to treatment. Some studies identified the presence of several (immune) cell types as prognostic factors, but often lack a deeper understanding of the underlying mechanisms, possibly leading to contradictory findings. Although the TME in pediatric glioma is regarded as "cold", several treatment options are emerging, with the TME being the primary target of treatment. Therefore, it is crucial to study the TME of pediatric glioma, so that the interactions between TME, tumoral cells and therapeutics can be better understood before, during and after treatment. In this review, we provide an overview of the available insights into the composition and role of the TME across different types of pediatric glioma. Moreover, where possible, we provide a framework on how a particular TME may influence responses to conventional- and/or immunotherapy.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Criança , Glioma/terapia , Neoplasias Encefálicas/terapia , Imunoterapia , Microambiente Tumoral
4.
Mol Clin Oncol ; 18(3): 18, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36798463

RESUMO

Acute megakaryoblastic leukemia (AMKL) is a rare disease, occurring mostly in infants and young children. The chromosomal translocation t(1;22)(p13;q13), resulting in the RBM15-MKL1 fusion gene, is a recurrent and diagnostic translocation in infants with AMKL. The present case report describes a case of a newborn girl, without Down's syndrome, with congenital AMKL. At birth, the infant had hepatosplenomegaly and the peripheral blood count revealed anemia, thrombopenia and leukocytosis, with 28% blasts. Immunophenotyping demonstrated blasts positive for CD34, CD61 and CD42b. Karyotyping of these blasts (R-banding) showed a hitherto unreported chromosomal translocation, t(1;7;22)(p13;q21;q13), a 3-way variant of the t(1;22)(p13;q13) variant. Fluorescent in situ hybridization analysis confirmed the presence of the RBM15-MKL1 fusion gene.

5.
Stem Cells ; 29(5): 871-82, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21433224

RESUMO

Several adherent postnatal stem cells have been described with different phenotypic and functional properties. As many of these cells are being considered for clinical therapies, it is of great importance that the identity and potency of these products is validated. We compared the phenotype and functional characteristics of human mesenchymal stem cells (hMSCs), human mesoangioblasts (hMab), and human multipotent adult progenitor cells (hMAPCs) using uniform standardized methods. Human MAPCs could be expanded significantly longer in culture. Differences in cell surface marker expression were found among the three cell populations with CD140b being a distinctive marker among the three cell types. Differentiation capacity towards adipocytes, osteoblasts, chondrocytes, and smooth muscle cells in vitro, using established protocols, was similar among the three cell types. However, only hMab differentiated to skeletal myocytes, while only hMAPCs differentiated to endothelium in vitro and in vivo. A comparative transcriptome analysis confirmed that the three cell populations are distinct and revealed gene signatures that correlated with their specific functional properties. Furthermore, we assessed whether the phenotypic, functional, and transcriptome features were mediated by the culture conditions. Human MSCs and hMab cultured under MAPC conditions became capable of generating endothelial-like cells, whereas hMab lost some of their ability to generate myotubes. By contrast, hMAPCs cultured under MSC conditions lost their endothelial differentiation capacity, whereas this was retained when cultured under Mab conditions, however, myogenic capacity was not gained under Mab conditions. These studies demonstrate that hMSCs, hMab, and hMAPCs have different properties that are partially mediated by the culture conditions.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Adipócitos/citologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Condrócitos/citologia , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Miócitos de Músculo Liso/citologia , Osteoblastos/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Cell Transplant ; 23(9): 1099-110, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23562064

RESUMO

Human multipotent adult progenitor cells (hMAPCs) are isolated from bone marrow with a more extensive expansion capacity compared to human mesenchymal stem cells (hMSCs) and with the ability to differentiate into endothelium. Like hMSCs, hMAPCs inhibit T-cell proliferation induced by alloantigens. In this study, we tested the interaction between hMAPCs and natural killer (NK) cells. We assessed the susceptibility of hMAPCs to NK cell-mediated lysis and the immunomodulation of hMAPCs on NK cell function during IL-2-driven stimulation and the cytolytic effector phase. Human MAPCs express the ligands PVR and ULBP-2/5/6, which are recognized by activating NK cell receptors. However, they also express MHC class I molecules, which induce inhibitory signals in NK cells. Freshly isolated NK cells at different effector:target ratios did not kill hMAPCs as assessed by an MTT and (51)Cr-release assay, while hMAPCs impaired the cytotoxic activity of resting NK cells against the NK-sensitive K562 leukemia cell line. By contrast, IL-2-stimulated NK cells were capable of killing hMAPCs, and preactivated NK cells were not influenced during their cytotoxic effector function against K562 cells by hMAPCs. When added during the 6-day preactivation phase with IL-2, hMAPCs dose-dependently reduced NK cell proliferation in an IDO-dependent manner, but they did not influence the induction of cytotoxic capacity by IL-2. This study indicates that human MAPCs mutually interact with NK cells.


Assuntos
Células Matadoras Naturais/imunologia , Células-Tronco Multipotentes/citologia , Adolescente , Adulto , Células da Medula Óssea/citologia , Proliferação de Células , Células Cultivadas , Criança , Pré-Escolar , Técnicas de Cocultura , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Interferon gama/farmacologia , Interleucina-2/genética , Interleucina-2/metabolismo , Interleucina-2/farmacologia , Células K562 , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/citologia , Ligantes , Ativação Linfocitária/imunologia , Masculino , Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Multipotentes/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
7.
Cell Transplant ; 22(10): 1915-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23031260

RESUMO

Multipotent adult progenitor cells (MAPCs) are bone marrow-derived nonhematopoietic stem cells with a broad differentiation potential and extensive expansion capacity. A comparative study between human mesenchymal stem cells (hMSCs) and human MAPCs (hMAPCs) has shown that hMAPCs have clearly distinct phenotypical and functional characteristics from hMSCs. In particular, hMAPCs express lower levels of MHC class I than hMSCs and cannot only differentiate into typical mesenchymal cell types but can also differentiate in vitro and in vivo into functional endothelial cells. The use of hMSCs as cellular immunomodulatory stem cell products gained much interest since their immunomodulatory capacities in vitro became evident over the last decade. Currently, the clinical grade stem cell product of hMAPCs is already used in clinical trials to prevent graft-versus-host disease (GVHD), as well as for the treatment of acute myocardial infarct, ischemic stroke, and Crohn's disease. Therefore, we studied the immune phenotype, immunogenicity, and immunosuppressive effect of hMAPCs in vitro. We demonstrated that hMAPCs are nonimmunogenic for T-cell proliferation and cytokine production. In addition, hMAPCs exert strong immunosuppressive effects on T-cell alloreactivity and on T-cell proliferation induced by mitogens and recall antigens. This immunomodulatory effect was not MHC restricted, which makes off-the-shelf use promising. The immunosuppressive effect of hMAPCs is partially mediated via soluble factors and dependent on indoleamine 2,3-dioxygenase (IDO) activity. At last, we isolated hMAPCs, the clinical grade stem cell product of hMAPCs, named MultiStem, and hMSCs from one single donor and observed that both the immunogenicity and the immunosuppressive capacities of all three stem cell products are comparable in vitro. In conclusion, hMAPCs have potent immunomodulatory properties in vitro and can serve as a valuable cell source for the clinical use of immunomodulatory cellular stem cell product.


Assuntos
Células-Tronco Multipotentes/imunologia , Linfócitos T/imunologia , Adulto , Aloenxertos , Células da Medula Óssea/citologia , Proliferação de Células , Células Cultivadas , Criança , Citocinas/metabolismo , Feminino , Humanos , Imunofenotipagem , Terapia de Imunossupressão , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Masculino , Pessoa de Meia-Idade , Células-Tronco Multipotentes/citologia , Linfócitos T/citologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA