Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Psychiatry ; 26(11): 6125-6148, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34188164

RESUMO

While the transcription factor NEUROD2 has recently been associated with epilepsy, its precise role during nervous system development remains unclear. Using a multi-scale approach, we set out to understand how Neurod2 deletion affects the development of the cerebral cortex in mice. In Neurod2 KO embryos, cortical projection neurons over-migrated, thereby altering the final size and position of layers. In juvenile and adults, spine density and turnover were dysregulated in apical but not basal compartments in layer 5 neurons. Patch-clamp recordings in layer 5 neurons of juvenile mice revealed increased intrinsic excitability. Bulk RNA sequencing showed dysregulated expression of many genes associated with neuronal excitability and synaptic function, whose human orthologs were strongly associated with autism spectrum disorders (ASD). At the behavior level, Neurod2 KO mice displayed social interaction deficits, stereotypies, hyperactivity, and occasionally spontaneous seizures. Mice heterozygous for Neurod2 had similar defects, indicating that Neurod2 is haploinsufficient. Finally, specific deletion of Neurod2 in forebrain excitatory neurons recapitulated cellular and behavioral phenotypes found in constitutive KO mice, revealing the region-specific contribution of dysfunctional Neurod2 in symptoms. Informed by these neurobehavioral features in mouse mutants, we identified eleven patients from eight families with a neurodevelopmental disorder including intellectual disability and ASD associated with NEUROD2 pathogenic mutations. Our findings demonstrate crucial roles for Neurod2 in neocortical development, whose alterations can cause neurodevelopmental disorders including intellectual disability and ASD.


Assuntos
Transtorno Autístico , Neuropeptídeos , Animais , Transtorno Autístico/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Córtex Cerebral/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Prosencéfalo/metabolismo , Fatores de Transcrição/metabolismo
3.
Biol Psychiatry ; 86(4): 274-285, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31060802

RESUMO

BACKGROUND: Heterozygous deletion of the TSHZ3 gene, encoding for the teashirt zinc-finger homeobox family member 3 (TSHZ3) transcription factor that is highly expressed in cortical projection neurons (CPNs), has been linked to an autism spectrum disorder (ASD) syndrome. Similarly, mice with Tshz3 haploinsufficiency show ASD-like behavior, paralleled by molecular changes in CPNs and corticostriatal synaptic dysfunctions. Here, we aimed at gaining more insight into "when" and "where" TSHZ3 is required for the proper development of the brain, and its deficiency crucial for developing this ASD syndrome. METHODS: We generated and characterized a novel mouse model of conditional Tshz3 deletion, obtained by crossing Tshz3flox/flox with CaMKIIalpha-Cre mice, in which Tshz3 is deleted in CPNs from postnatal day 2 to 3 onward. We characterized these mice by a multilevel approach combining genetics, cell biology, electrophysiology, behavioral testing, and bioinformatics. RESULTS: These conditional Tshz3 knockout mice exhibit altered cortical expression of more than 1000 genes, ∼50% of which have their human orthologue involved in ASD, in particular genes encoding for glutamatergic synapse components. Consistently, we detected electrophysiological and synaptic changes in CPNs and impaired corticostriatal transmission and plasticity. Furthermore, these mice showed strong ASD-like behavioral deficits. CONCLUSIONS: Our study reveals a crucial postnatal role of TSHZ3 in the development and functioning of the corticostriatal circuitry and provides evidence that dysfunction in these circuits might be determinant for ASD pathogenesis. Our conditional Tshz3 knockout mouse constitutes a novel ASD model, opening the possibility for an early postnatal therapeutic window for the syndrome linked to TSHZ3 haploinsufficiency.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Homeodomínio/genética , Sinapses/genética , Fatores de Transcrição/genética , Animais , Transtorno do Espectro Autista/patologia , Comportamento Animal , Deleção Cromossômica , Cromossomos Humanos Par 19 , Modelos Animais de Doenças , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Haploinsuficiência , Heterozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout
4.
Nat Biotechnol ; 22(2): 177-83, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14755292

RESUMO

A major goal of proteomics is the complete description of the protein interaction network underlying cell physiology. A large number of small scale and, more recently, large-scale experiments have contributed to expanding our understanding of the nature of the interaction network. However, the necessary data integration across experiments is currently hampered by the fragmentation of publicly available protein interaction data, which exists in different formats in databases, on authors' websites or sometimes only in print publications. Here, we propose a community standard data model for the representation and exchange of protein interaction data. This data model has been jointly developed by members of the Proteomics Standards Initiative (PSI), a work group of the Human Proteome Organization (HUPO), and is supported by major protein interaction data providers, in particular the Biomolecular Interaction Network Database (BIND), Cellzome (Heidelberg, Germany), the Database of Interacting Proteins (DIP), Dana Farber Cancer Institute (Boston, MA, USA), the Human Protein Reference Database (HPRD), Hybrigenics (Paris, France), the European Bioinformatics Institute's (EMBL-EBI, Hinxton, UK) IntAct, the Molecular Interactions (MINT, Rome, Italy) database, the Protein-Protein Interaction Database (PPID, Edinburgh, UK) and the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, EMBL, Heidelberg, Germany).


Assuntos
Sistemas de Gerenciamento de Base de Dados/normas , Bases de Dados de Proteínas/normas , Armazenamento e Recuperação da Informação/normas , Mapeamento de Interação de Proteínas/normas , Proteínas/classificação , Proteômica/normas , Interface Usuário-Computador , Guias como Assunto , Armazenamento e Recuperação da Informação/métodos , Internacionalidade , Processamento de Linguagem Natural , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteômica/métodos , Padrões de Referência , Software
5.
BMC Bioinformatics ; 7: 439, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17032440

RESUMO

BACKGROUND: Analyses of biomolecules for biodiversity, phylogeny or structure/function studies often use graphical tree representations. Many powerful tree editors are now available, but existing tree visualization tools make little use of meta-information related to the entities under study such as taxonomic descriptions or gene functions that can hardly be encoded within the tree itself (if using popular tree formats). Consequently, a tedious manual analysis and post-processing of the tree graphics are required if one needs to use external information for displaying or investigating trees. RESULTS: We have developed TreeDyn, a tool using annotations and dynamic graphical methods for editing and analyzing multiple trees. The main features of TreeDyn are 1) the management of multiple windows and multiple trees per window, 2) the export of graphics to several standard file formats with or without HTML encapsulation and a new format called TGF, which enables saving and restoring graphical analysis, 3) the projection of texts or symbols facing leaf labels or linked to nodes, through manual pasting or by using annotation files, 4) the highlight of graphical elements after querying leaf labels (or annotations) or by selection of graphical elements and information extraction, 5) the highlight of targeted trees according to a source tree browsed by the user, 6) powerful scripts for automating repetitive graphical tasks, 7) a command line interpreter enabling the use of TreeDyn through CGI scripts for online building of trees, 8) the inclusion of a library of packages dedicated to specific research fields involving trees. CONCLUSION: TreeDyn is a tree visualization and annotation tool which includes tools for tree manipulation and annotation and uses meta-information through dynamic graphical operators or scripting to help analyses and annotations of single trees or tree collections.


Assuntos
Gráficos por Computador , Bases de Dados Genéticas , Árvores de Decisões
6.
Nat Genet ; 48(11): 1359-1369, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27668656

RESUMO

TSHZ3, which encodes a zinc-finger transcription factor, was recently positioned as a hub gene in a module of the genes with the highest expression in the developing human neocortex, but its functions remained unknown. Here we identify TSHZ3 as the critical region for a syndrome associated with heterozygous deletions at 19q12-q13.11, which includes autism spectrum disorder (ASD). In Tshz3-null mice, differentially expressed genes include layer-specific markers of cerebral cortical projection neurons (CPNs), and the human orthologs of these genes are strongly associated with ASD. Furthermore, mice heterozygous for Tshz3 show functional changes at synapses established by CPNs and exhibit core ASD-like behavioral abnormalities. These findings highlight essential roles for Tshz3 in CPN development and function, whose alterations can account for ASD in the newly defined TSHZ3 deletion syndrome.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Homeodomínio/genética , Neocórtex/patologia , Neurônios/patologia , Fatores de Transcrição/genética , Animais , Transtorno do Espectro Autista/patologia , Deleção Cromossômica , Cromossomos Humanos Par 19 , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Haploinsuficiência , Heterozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos CBA , Neocórtex/embriologia , Neurogênese/genética , Sinapses/genética
7.
BMC Syst Biol ; 2: 45, 2008 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-18489752

RESUMO

BACKGROUND: Signalling pathways relay information by transmitting signals from cell surface receptors to intracellular effectors that eventually activate the transcription of target genes. Since signalling pathways involve several types of molecular interactions including protein-protein interactions, we postulated that investigating their organization in the context of the global protein-protein interaction network could provide a new integrated view of signalling mechanisms. RESULTS: Using a graph-theory based method to analyse the fly protein-protein interaction network, we found that each signalling pathway is organized in two to three different signalling modules. These modules contain canonical proteins of the signalling pathways, known regulators as well as other proteins thereby predicted to participate to the signalling mechanisms. Connections between the signalling modules are prominent as compared to the other network's modules and interactions within and between signalling modules are among the more central routes of the interaction network. CONCLUSION: Altogether, these modules form an interactome sub-network devoted to signalling with particular topological properties: modularity, density and centrality. This finding reflects the integration of the signalling system into cell functioning and its important role connecting and coordinating different biological processes at the level of the interactome.


Assuntos
Análise por Conglomerados , Sistemas de Gerenciamento de Base de Dados , Proteínas de Drosophila/metabolismo , Drosophila , Mapeamento de Interação de Proteínas/métodos , Transdução de Sinais , Animais , Drosophila/metabolismo , Modelos Biológicos , Redes Neurais de Computação , Biologia de Sistemas/métodos , Integração de Sistemas
8.
Bioinformatics ; 22(2): 248-50, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16269417

RESUMO

UNLABELLED: The PRODISTIN Web Site is a web service allowing users to functionally classify genes/proteins from any type of interaction network. The resulting computation provides a classification tree in which (1) genes/proteins are clustered according to the identity of their interaction partners and (2) functional classes are delineated in the tree using the Biological Process Gene Ontology annotations. AVAILABILITY: The PRODISTIN Web Site is freely accessible at http://gin.univ-mrs.fr/webdistin


Assuntos
Documentação/métodos , Perfilação da Expressão Gênica/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas/classificação , Proteínas/metabolismo , Software , Interface Usuário-Computador , Algoritmos , Internet , Sistemas On-Line
9.
Genome Res ; 15(3): 376-84, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15710747

RESUMO

The Drosophila (fruit fly) model system has been instrumental in our current understanding of human biology, development, and diseases. Here, we used a high-throughput yeast two-hybrid (Y2H)-based technology to screen 102 bait proteins from Drosophila melanogaster, most of them orthologous to human cancer-related and/or signaling proteins, against high-complexity fly cDNA libraries. More than 2300 protein-protein interactions (PPI) were identified, of which 710 are of high confidence. The computation of a reliability score for each protein-protein interaction and the systematic identification of the interacting domain combined with a prediction of structural/functional motifs allow the elaboration of known complexes and the identification of new ones. The full data set can be visualized using a graphical Web interface, the PIMRider (http://pim.hybrigenics.com), and is also accessible in the PSI standard Molecular Interaction data format. Our fly Protein Interaction Map (PIM) is surprisingly different from the one recently proposed by Giot et al. with little overlap between the two data sets. Analysis of the differences in data sets and methods suggests alternative strategies to enhance the accuracy and comprehensiveness of the post-genomic generation of broad-scale protein interaction maps.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Animais , Sequência de Bases , DNA Complementar/genética , Proteínas de Drosophila/química , Biblioteca Gênica , Genes de Insetos , Genes ras , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade da Espécie , Técnicas do Sistema de Duplo-Híbrido
10.
J Struct Funct Genomics ; 3(1-4): 213-24, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12836700

RESUMO

The concept of protein function is widely used and manipulated by biologists. However, the means of the concept and its understanding may vary depending on the level of functionality one considers (molecular, cellular, physiological, etc.). Genomic studies and new high-throughput methods of the post-genomic era provide the opportunity to shed a new light on the concept of protein function: protein-protein interactions can now be considered as pieces of incomplete but still gigantic networks and the analysis of these networks will permit the emergence of a more integrated view of protein function. In this context, we propose a new functional classification method, which, unlike usual methods based on sequence homology, allows the definition of functional classes of protein based on the identity of their interacting partners. An example of such classification will be shown and discussed for a subset of Saccharomyces cerevisiae proteins, accounting for 7% of the yeast proteome. The genome of the budding yeast contains 50% of protein-coding genes that are paralogs, including 457 pairs of duplicated genes coming probably from an ancient whole genome duplication. We will comment on the functional classification of the duplicated genes when using our method and discuss the contribution of these results to the understanding of function evolution for the duplicated genes.


Assuntos
Evolução Molecular , Duplicação Gênica , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/genética , Filogenia , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/fisiologia
11.
Genome Biol ; 5(10): R76, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15461795

RESUMO

BACKGROUND: Studying the evolution of the function of duplicated genes usually implies an estimation of the extent of functional conservation/divergence between duplicates from comparison of actual sequences. This only reveals the possible molecular function of genes without taking into account their cellular function(s). We took into consideration this latter dimension of gene function to approach the functional evolution of duplicated genes by analyzing the protein-protein interaction network in which their products are involved. For this, we derived a functional classification of the proteins using PRODISTIN, a bioinformatics method allowing comparison of protein function. Our work focused on the duplicated yeast genes, remnants of an ancient whole-genome duplication. RESULTS: Starting from 4,143 interactions, we analyzed 41 duplicated protein pairs with the PRODISTIN method. We showed that duplicated pairs behaved differently in the classification with respect to their interactors. The different observed behaviors allowed us to propose a functional scale of conservation/divergence for the duplicated genes, based on interaction data. By comparing our results to the functional information carried by GO annotations and sequence comparisons, we showed that the interaction network analysis reveals functional subtleties, which are not discernible by other means. Finally, we interpreted our results in terms of evolutionary scenarios. CONCLUSIONS: Our analysis might provide a new way to analyse the functional evolution of duplicated genes and constitutes the first attempt of protein function evolutionary comparisons based on protein-protein interactions.


Assuntos
Biologia Computacional/métodos , Genes Duplicados/genética , Genes Fúngicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Evolução Molecular , Duplicação Gênica , Genoma Fúngico , Ligação Proteica , Software
12.
Genome Biol ; 5(12): R101, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15575967

RESUMO

We have developed methods and tools based on the Gene Ontology (GO) resource allowing the identification of statistically over- or under-represented terms in a gene dataset; the clustering of functionally related genes within a set; and the retrieval of genes sharing annotations with a query gene. GO annotations can also be constrained to a slim hierarchy or a given level of the ontology. The source codes are available upon request, and distributed under the GPL license.


Assuntos
Genômica/métodos , Software , Animais , Bases de Dados Genéticas , Drosophila melanogaster/genética , Internet , Mapeamento de Interação de Proteínas
13.
Genome Biol ; 5(1): R6, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14709178

RESUMO

We here describe PRODISTIN, a new computational method allowing the functional clustering of proteins on the basis of protein-protein interaction data. This method, assessed biologically and statistically, enabled us to classify 11% of the Saccharomyces cerevisiae proteome into several groups, the majority of which contained proteins involved in the same biological process(es), and to predict a cellular function for many otherwise uncharacterized proteins.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/citologia , Análise por Conglomerados , Biologia Computacional/métodos , Biologia Computacional/estatística & dados numéricos , Valor Preditivo dos Testes , Mapeamento de Interação de Proteínas/estatística & dados numéricos , Proteoma/fisiologia , Saccharomyces cerevisiae/genética , Software , Design de Software
14.
Development ; 130(7): 1243-54, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12588842

RESUMO

Chromatin immunoprecipitation after UV crosslinking of DNA/protein interactions was used to construct a library enriched in genomic sequences that bind to the Engrailed transcription factor in Drosophila embryos. Sequencing of the clones led to the identification of 203 Engrailed-binding fragments localized in intergenic or intronic regions. Genes lying near these fragments, which are considered as potential Engrailed target genes, are involved in different developmental pathways, such as anteroposterior patterning, muscle development, tracheal pathfinding or axon guidance. We validated this approach by in vitro and in vivo tests performed on a subset of Engrailed potential targets involved in these various pathways. Finally, we present strong evidence showing that an immunoprecipitated genomic DNA fragment corresponds to a promoter region involved in the direct regulation of frizzled2 expression by engrailed in vivo.


Assuntos
DNA/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição , Animais , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica , Larva/metabolismo , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA