Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13989, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886371

RESUMO

In vitro evolution and whole genome analysis has proven to be a powerful method for studying the mechanism of action of small molecules in many haploid microbes but has generally not been applied to human cell lines in part because their diploid state complicates the identification of variants that confer drug resistance. To determine if haploid human cells could be used in MOA studies, we evolved resistance to five different anticancer drugs (doxorubicin, gemcitabine, etoposide, topotecan, and paclitaxel) using a near-haploid cell line (HAP1) and then analyzed the genomes of the drug resistant clones, developing a bioinformatic pipeline that involved filtering for high frequency alleles predicted to change protein sequence, or alleles which appeared in the same gene for multiple independent selections with the same compound. Applying the filter to sequences from 28 drug resistant clones identified a set of 21 genes which was strongly enriched for known resistance genes or known drug targets (TOP1, TOP2A, DCK, WDR33, SLCO3A1). In addition, some lines carried structural variants that encompassed additional known resistance genes (ABCB1, WWOX and RRM1). Gene expression knockdown and knockout experiments of 10 validation targets showed a high degree of specificity and accuracy in our calls and demonstrates that the same drug resistance mechanisms found in diverse clinical samples can be evolved, discovered and studied in an isogenic background.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Haploidia , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/farmacologia , Genoma Humano , Sequenciamento Completo do Genoma/métodos , Linhagem Celular
2.
Antioxidants (Basel) ; 9(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899204

RESUMO

Gentamicin is a used antibiotic that causes nephrotoxicity in 10-20% of treatment periods, which limits its use considerably. Our results have shown that cilastatin may be a promising therapeutic alternative in toxin-induced acute kidney injury (AKI). Here, we investigated its potential use as a nephroprotector against gentamicin-induced AKI in vitro and in vivo. Porcine renal cells and rats were treated with gentamicin and/or cilastatin. In vivo nephrotoxicity was analyzed by measuring biochemical markers and renal morphology. Different apoptotic, oxidative and inflammatory parameters were studied at cellular and systemic levels. Megalin, mainly responsible for the entry of gentamicin into the cells, was also analyzed. Results show that cilastatin protects cells from gentamicin-induced AKI. Cilastatin decreased creatinine, BUN, kidney injury molecule-1 (KIM-1) and severe morphological changes previously increased by gentamicin in rats. The interference of cilastatin with lipid rafts cycling leads to decreased expression of megalin, and therefore gentamicin uptake and myeloid bodies, resulting in a decrease of apoptotic, oxidative and inflammatory events. Moreover, cilastatin did not prevent bacterial death by gentamicin. Cilastatin reduced gentamicin-induced AKI by preventing key steps in the amplification of the damage, which is associated to the disruption of megalin-gentamicin endocytosis. Therefore, cilastatin might represent a novel therapeutic tool in the prevention and treatment of gentamicin-induced AKI in the clinical setting.

3.
Science ; 362(6419)2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30523084

RESUMO

To discover leads for next-generation chemoprotective antimalarial drugs, we tested more than 500,000 compounds for their ability to inhibit liver-stage development of luciferase-expressing Plasmodium spp. parasites (681 compounds showed a half-maximal inhibitory concentration of less than 1 micromolar). Cluster analysis identified potent and previously unreported scaffold families as well as other series previously associated with chemoprophylaxis. Further testing through multiple phenotypic assays that predict stage-specific and multispecies antimalarial activity distinguished compound classes that are likely to provide symptomatic relief by reducing asexual blood-stage parasitemia from those which are likely to only prevent malaria. Target identification by using functional assays, in vitro evolution, or metabolic profiling revealed 58 mitochondrial inhibitors but also many chemotypes possibly with previously unidentified mechanisms of action.


Assuntos
Antimaláricos/farmacologia , Quimioprevenção , Descoberta de Drogas , Malária/prevenção & controle , Plasmodium/efeitos dos fármacos , Antimaláricos/química , Antimaláricos/isolamento & purificação , Antimaláricos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Humanos , Mitocôndrias/efeitos dos fármacos , Plasmodium/crescimento & desenvolvimento
4.
Biomed Res Int ; 2016: 2518626, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27556029

RESUMO

Warm ischemia (WI) produces a significant deleterious effect in potential kidney grafts. Hypothermic machine perfusion (HMP) seems to improve immediate graft function after transplant. Our aim was to analyze the effect of short pretransplant periods of pulsatile HMP on histology and renal injury in warm-ischemic kidneys. Twelve minipigs were used. WI was achieved in the right kidney by applying a vascular clamp for 45 min. After nephrectomy, autotransplant was performed following one of two strategies: cold storage of the kidneys or cold storage combined with perfusion in pulsatile HMP. The graft was removed early to study renal morphology, inflammation (fibrosis), and apoptosis. Proinflammatory activity and fibrosis were less pronounced after cold storage of the kidneys with HMP than after cold storage only. The use of HMP also decreased apoptosis compared with cold storage only. The detrimental effects on cells of an initial and prolonged period of WI seem to improve with a preservation protocol that includes a short period of pulsatile HMP after cold storage and immediately before the transplant, in comparison with cold storage only.


Assuntos
Transplante de Rim , Rim , Perfusão/métodos , Sobrevivência de Tecidos , Transplantes , Animais , Temperatura Baixa , Rim/patologia , Rim/fisiologia , Rim/cirurgia , Transplante de Rim/métodos , Transplante de Rim/estatística & dados numéricos , Suínos , Porco Miniatura , Fatores de Tempo , Transplantes/fisiologia , Transplantes/estatística & dados numéricos
5.
Biomed Res Int ; 2015: 704382, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26504822

RESUMO

Vancomycin is a very effective antibiotic for treatment of severe infections. However, its use in clinical practice is limited by nephrotoxicity. Cilastatin is a dehydropeptidase I inhibitor that acts on the brush border membrane of the proximal tubule to prevent accumulation of imipenem and toxicity. The aim of this study was to investigate the potential protective effect of cilastatin on vancomycin-induced apoptosis and toxicity in cultured renal proximal tubular epithelial cells (RPTECs). Porcine RPTECs were cultured in the presence of vancomycin with and without cilastatin. Vancomycin induced dose-dependent apoptosis in cultured RPTECs, with DNA fragmentation, cell detachment, and a significant decrease in mitochondrial activity. Cilastatin prevented apoptotic events and diminished the antiproliferative effect and severe morphological changes induced by vancomycin. Cilastatin also improved the long-term recovery and survival of RPTECs exposed to vancomycin and partially attenuated vancomycin uptake by RPTECs. On the other hand, cilastatin had no effects on vancomycin-induced necrosis or the bactericidal effect of the antibiotic. This study indicates that cilastatin protects against vancomycin-induced proximal tubule apoptosis and increases cell viability, without compromising the antimicrobial effect of vancomycin. The beneficial effect could be attributed, at least in part, to decreased accumulation of vancomycin in RPTECs.


Assuntos
Antibacterianos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Cilastatina/farmacologia , Túbulos Renais Proximais/citologia , Substâncias Protetoras/farmacologia , Vancomicina/toxicidade , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA