Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Biol Sci ; 290(1998): 20230551, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161330

RESUMO

Dispersal of eggs and larvae from spawning sites is critical to the population dynamics and conservation of marine fishes. For overfished species like critically endangered Nassau grouper (Epinephelus striatus), recovery depends on the fate of eggs spawned at the few remaining aggregation sites. Biophysical models can predict larval dispersal, yet these rely on assumed values of key parameters, such as diffusion and mortality rates, which have historically been difficult or impossible to estimate. We used in situ imaging to record three-dimensional positions of individual eggs and larvae in proximity to oceanographic drifters released into egg plumes from the largest known Nassau grouper spawning aggregation. We then estimated a diffusion-mortality model and applied it to previous years' drifter tracks to evaluate the possibility of retention versus export to nearby sites within 5 days of spawning. Results indicate that larvae were retained locally in 2011 and 2017, with 2011 recruitment being a substantial driver of population recovery on Little Cayman. Export to a nearby island with a depleted population occurred in 2016. After two decades of protection, the population appears to be self-replenishing but also capable of seeding recruitment in the region, supporting calls to incorporate spawning aggregation protections into fisheries management.


Assuntos
Jacarés e Crocodilos , Bass , Animais , Larva , Biofísica , Pesqueiros
2.
J Opt Soc Am A Opt Image Sci Vis ; 38(9): 1320-1331, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613139

RESUMO

Plankton interact with the environment according to their size and three-dimensional (3D) structure. To study them outdoors, these translucent specimens are imaged in situ. Light projects through a specimen in each image. The specimen has a random scale, drawn from the population's size distribution and random unknown pose. The specimen appears only once before drifting away. We achieve 3D tomography using such a random ensemble to statistically estimate an average volumetric distribution of the plankton type and specimen size. To counter errors due to non-rigid deformations, we weight the data, drawing from advanced models developed for cryo-electron microscopy. The weights convey the confidence in the quality of each datum. This confidence relies on a statistical error model. We demonstrate the approach on live plankton using an underwater field microscope.


Assuntos
Modelos Teóricos , Plâncton , Tomografia Óptica , Microscopia Crioeletrônica , Modelos Biológicos
3.
J Acoust Soc Am ; 144(5): 2811, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30522317

RESUMO

Groups of coordinated underwater vehicles or sensors are powerful tools for monitoring the ocean. A requirement of many coordinated surveys is to determine a spatial reference between each node in a swarm. This work considers the self-localization of a swarm of independently moving vehicles using acoustic noise from a dominating incoherent source recorded by a single hydrophone onboard each vehicle. This method provides an inexpensive and infrastructure-free spatial reference between vehicles. Movement between the vehicles changes the swarm geometry and a self-localization estimate must be generated from data collected on short time scales. This challenges past self-localization approaches for acoustic arrays. To overcome this challenge, the proposed self-localization algorithm jointly estimates the vehicle geometry and the directionality of the ambient noise field, without prior knowledge of either estimate. To demonstrate this method, experimental results are provided when a boat is the main dominating source. The results demonstrate the ability to both estimate the direction of arrival of the boat and the relative positions of the vehicles in the swarm. The approach in this paper is not limited to moving vessels. Simulations are provided to examine three different factors that affect the proposed solution: inter-vehicle motion, vehicle geometry, and the azimuthal variance of the noise field.

4.
Appl Opt ; 55(33): 9440-9449, 2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-27869847

RESUMO

As submicron particles play an important role in a variety of ecosystems that include aqueous, terrestrial, and atmospheric, a measurement system to quantify them is highly desirable. In pursuit of formulating and fabricating a system to size them using visible light, a system that collects multi-directional scattered light from individual particles is proposed. A prototype of the system was simulated, built, and tested via calibration with a set of polystyrene spheres in water with known sizes. Results indicate that the system can accurately resolve the size of these particles in the 0.1 to 0.8 µm range. The system incorporates a design that uses oblique illumination to collect scattered light over a large range of both forward and backward scatter angles. This is then followed by the calculation of a ratio of forward to backscattered light, integrated over a suitably defined range. The monotonic dependence of this ratio upon particle size leads to an accurate estimate of particle size. The method was explored first, using simulations, and followed with a working version. The sensitivity of the method to a range of relative refractive index was tested using simulations. The results indicate that the technique is relatively insensitive to this parameter and thus of potential use in the analysis of particles from a variety of ecosystems. The paper concludes with a discussion of a variety of pragmatic issues, including the required dynamic range as well as further research needed with environmentally relevant specimens to create a pragmatic instrument.

5.
J Acoust Soc Am ; 140(6): 4260, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28040049

RESUMO

This paper presents a demonstration of ambient acoustic noise processing on a set of free floating oceanic receivers whose relative positions vary with time. It is shown that it is possible to retrieve information that is relevant to the travel time between the receivers. With thousands of short time cross-correlations (10 s) of varying distance, it is shown that on average, the decrease in amplitude of the noise correlation function with increased separation follows a power law. This suggests that there may be amplitude information that is embedded in the noise correlation function. An incoherent beamformer is developed, which shows that it is possible to determine a source direction using an array with moving elements and large element separation. This incoherent beamformer is used to verify cases when the distribution of noise sources in the ocean allows one to recover travel time information between pairs of mobile receivers.

6.
Opt Express ; 22(24): 30074-91, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606937

RESUMO

Two single-waveband low-light radiometers were developed to characterize properties of the underwater light field relevant to biological camouflage at mesopelagic ocean depths. Phenomena of interest were vertical changes in downward irradiance of ambient light at wavelengths near 470 nm and 560 nm, and flashes from bioluminescent organisms. Depth profiles were acquired at multiple deep stations in different geographic regions. Results indicate significant irradiance magnitudes at 560 nm, providing direct evidence of energy transfer as described by Raman scattering. Analysis of a night profile yielded multiple examples of bioluminescent flashes. The selection of high-sensitivity, high-speed silicon photomultipliers as detectors enabled measurement of spectrally-resolved irradiance to greater than 400 m depth.


Assuntos
Luz , Oceanos e Mares , Radiometria/instrumentação , Animais , Calibragem , Ecossistema , Cinética , Medições Luminescentes , Dinâmica não Linear , Óptica e Fotônica/instrumentação , Análise Espectral
7.
Opt Express ; 21(3): 3603-16, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23481817

RESUMO

Photonic structures in the skin of pelagic fishes and squids evolved specifically for hiding in the complex light field of the open ocean. To understand the principles under which these structures operate, a detailed characterization of their optical properties is required. An optical scatterometer has been developed to measure one important property, the bidirectional reflectance distribution function (BRDF). The instrument was used to collect reflectance functions from the squid Pterygioteuthis microlampas and fish Sternoptyx sp. Although the animals appear very different to a casual observer, the results reveal interesting similarities in their scattering patterns, suggesting a similar optical strategy for hiding in open water.


Assuntos
Peixes/fisiologia , Fotometria/métodos , Refratometria/métodos , Animais
8.
Environ Sci Process Impacts ; 24(2): 290-315, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35048927

RESUMO

Marine aerosols strongly influence climate through their interactions with solar radiation and clouds. However, significant questions remain regarding the influences of biological activity and seawater chemistry on the flux, chemical composition, and climate-relevant properties of marine aerosols and gases. Wave channels, a traditional tool of physical oceanography, have been adapted for large-scale ocean-atmosphere mesocosm experiments in the laboratory. These experiments enable the study of aerosols under controlled conditions which isolate the marine system from atmospheric anthropogenic and terrestrial influences. Here, we present an overview of the 2019 Sea Spray Chemistry and Particle Evolution (SeaSCAPE) study, which was conducted in an 11 800 L wave channel which was modified to facilitate atmospheric measurements. The SeaSCAPE campaign sought to determine the influence of biological activity in seawater on the production of primary sea spray aerosols, volatile organic compounds (VOCs), and secondary marine aerosols. Notably, the SeaSCAPE experiment also focused on understanding how photooxidative aging processes transform the composition of marine aerosols. In addition to a broad range of aerosol, gas, and seawater measurements, we present key results which highlight the experimental capabilities during the campaign, including the phytoplankton bloom dynamics, VOC production, and the effects of photochemical aging on aerosol production, morphology, and chemical composition. Additionally, we discuss the modifications made to the wave channel to improve aerosol production and reduce background contamination, as well as subsequent characterization experiments. The SeaSCAPE experiment provides unique insight into the connections between marine biology, atmospheric chemistry, and climate-relevant aerosol properties, and demonstrates how an ocean-atmosphere-interaction facility can be used to isolate and study reactions in the marine atmosphere in the laboratory under more controlled conditions.


Assuntos
Atmosfera , Água do Mar , Aerossóis/química , Atmosfera/química , Oceanos e Mares , Fitoplâncton , Água do Mar/química
9.
J Acoust Soc Am ; 129(2): 670-80, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21361426

RESUMO

This article demonstrates that multiview, broadband (635-935 kHz), nearly monostatic, acoustic reflections recorded from lateral views of juvenile fish can be used to infer animal orientation. Calibrated acoustic data were recorded from live fish in a laboratory, while orientation was measured simultaneously via optical images. Using eight animals, two-dimensional data sets of target strength as a function of frequency and orientation were obtained. Fish length, lateral thickness, and dorsoventral thickness ranged from 24 to 48 mm, 3 to 7 mm and 10 to 20 mm, respectively. Preliminary estimates of orientation were computed from the direction of the gradient of the local autocorrelation function in the target strength image. These local estimates were then median-filtered over the full system bandwidth (but still limited-angle) to improve accuracy. Angular estimates were then corrected for systematic bias via a simple, one-dimensional model that approximated the animals' reflection by that of a bar target. Taken over all orientations, the average absolute error in orientation estimation is 5.6° to 17°, dependent on the data set. Results indicate, for most sets of views, reasonable estimates of lateral orientation can be obtained from broadband, multiview data over a set of limited angular reflections.


Assuntos
Acústica , Monitoramento Ambiental/métodos , Peixes/fisiologia , Natação , Algoritmos , Animais , Calibragem , Simulação por Computador , Monitoramento Ambiental/normas , Peixes/anatomia & histologia , Densidade Demográfica , Processamento de Sinais Assistido por Computador , Espectrografia do Som
10.
Water Res ; 203: 117524, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34418642

RESUMO

The Dual Scripps Plankton Camera (DSPC) is a new approach for automated in-situ monitoring of phyto- and zooplankton communities based on a dual magnification dark-field imaging microscope. Here, we present the DSPC and its associated image processing while evaluating its capabilities in i) detecting and characterizing plankton species of different size and taxonomic categories and ii) measuring their abundance in both laboratory and field applications. In the laboratory, body size and abundance estimates by the DSPC significantly and robustly scaled with measurements derived by microscopy. In the field, a DSPC installed permanently at 3 m depth in Lake Greifensee (Switzerland) delivered images of plankton individuals, colonies, and heterospecific aggregates at hourly timescales without disrupting natural arrangements of interacting organisms, their microenvironment or their behavior. The DSPC was able to track the dynamics of taxa, mostly at the genus level, in the size range between ∼10 µm to ∼ 1 cm, covering many components of the planktonic food web (including parasites and potentially toxic cyanobacteria). Comparing data from the field-deployed DSPC to traditional sampling and microscopy revealed a general overall agreement in estimates of plankton diversity and abundances. The most significant disagreements between traditional methods and the DSPC resided in the measurements of zooplankton community properties. Our data suggest that the DSPC is better equipped to study the dynamics and demography of heterogeneously distributed organisms such as zooplankton, because high temporal resolution and continuous sampling offer more information and less variability in taxa detection and quantification than traditional sampling. Time series collected by the DSPC depicted ecological succession patterns, algal bloom dynamics and diel fluctuations with a temporal frequency and morphological resolution that was never observed by traditional methods. Access to high frequency, reproducible and real-time data of a large spectrum of the planktonic ecosystem expands our understanding of both applied and fundamental plankton ecology. We conclude the DSPC is robust for both research and water quality monitoring and suitable for stable long-term deployments.


Assuntos
Lagos , Plâncton , Animais , Ecossistema , Humanos , Fitoplâncton , Zooplâncton
11.
Opt Express ; 18(12): 12328-40, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20588358

RESUMO

In this article, the utility of structured illumination in order to enhance the contrast and subsequent range capability of an underwater imaging system is explored. The proposed method consists of transmitting a short pulse of light in a grid like pattern that consists of multiple, narrow, delta-function like beams. The grid pattern can be arranged in either a one-dimensional line or an area as a two-dimensional pattern. Scanning the pattern in time results in the sequential illumination of the entire scene. The receiving system architecture imposes the exact same, grid-like pattern sensitivity on the reflected light with a simple subsequent superposition of the time-sequenced images. The system can be viewed as a parallel implementation of a Laser Line Scan System where multiple beams are projected and received instead of a single one. The performance enhancement over more conventional systems that project either a sheet or an area of light is compared for a challenging underwater environment via computer simulations. The resulting images are analyzed as a function of the spacing between the projected light beams to characterize contrast and resolution. The results indicate that reasonable gains are obtainable for close spacing between the beams while quite significant gains are predicted for larger ones. Structured illumination systems can therefore collect images more rapidly than systems that scan a single beam; however with concomitant trade-offs in contrast and resolution.

12.
J Opt Soc Am A Opt Image Sci Vis ; 27(2): 151-8, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20126224

RESUMO

A set of algorithms is proposed to retrieve the size of spherically symmetric particles from the measured intensity of angular scatter data. Of special interest are low-contrast particles whose real part of the index of refraction is between 1.03 and 1.09 and whose size ka is constrained so that pi < or = ka < or = 16pi, where k=2pi/lambda and a is particle radius. Several algorithms are evaluated and compared that are based on either simple matching to the Mie theory predictions or inverse tomography methods. In the tomography methods, a previously proposed algorithm [Opt. Express. 15, 12217 (2007)] was used after estimating the phase of the scattered data or adapted to use intensity-only data. In order to ensure stability, all algorithms' performance was evaluated in the presence of moderate noise. The performance varied as a function of particle size, refractive index, and algorithm. Results suggest that a scattering device that collects only the angular scatter that is perpendicular to the polarization of incident light, usually denoted as S(1), can be used to accurately estimate the size of homogeneous, low-contrast, spherical particles whose diameters are close to the wavelength of the incident light.


Assuntos
Nefelometria e Turbidimetria/métodos , Óptica e Fotônica , Algoritmos , Simulação por Computador , Luz , Modelos Estatísticos , Tamanho da Partícula , Radiação , Refratometria , Reprodutibilidade dos Testes , Espalhamento de Radiação , Microbiologia da Água
13.
J Acoust Soc Am ; 124(2): 796-802, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18681572

RESUMO

A broadband, multiple-angle acoustic array was used to classify millimeter to centimeter sized live zooplankton in a laboratory tank. Reflections in the frequency range from 1.5 to 2.5 MHz were recorded from untethered 1-4 mm calanoid copepods and 8-12 mm mysids over an angular range of 0 degrees -47 degrees . A synchronized, coregistered video system recorded animal location and orientation. To highlight differences between animals, a frequency correlation matrix was computed from the observed wide-band power spectra of the scattered sound. Significant differences in the slopes and shapes of the eigenvalue spectra of this matrix were found for mysids versus copepods. These results support the idea that broadband, multiple-angle scatter can be used to classify organisms of different sizes and shapes.


Assuntos
Acústica , Som , Água , Zooplâncton/classificação , Acústica/instrumentação , Animais , Biomassa , Copépodes/classificação , Desenho de Equipamento , Modelos Teóricos , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Transdutores , Gravação em Vídeo
14.
Opt Express ; 15(19): 12217-29, 2007 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19547589

RESUMO

The problem of computing the internal electromagnetic field of a homogeneous sphere from the observation of its scattered light field is explored. Using empirical observations it shown that, to good approximation for low contrast objects, there is a simple Fourier relationship between a component of the internal E-field and the scattered light in a preferred plane. Based on this relationship an empirical algorithm is proposed to construct a spherically symmetric particle of approximately the same diameter as the original, homogeneous, one. The size parameter (ka) of this particle is then estimated and shown to be nearly identical to that of the original particle. The size parameter can then be combined with the integrated power of the scatter in the preferred plane to estimate refractive index. The estimated values are shown to be accurate in the presence of moderate noise for a class of size parameters.

15.
Nat Commun ; 8: 14189, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117837

RESUMO

Measuring the ever-changing 3-dimensional (3D) motions of the ocean requires simultaneous sampling at multiple locations. In particular, sampling the complex, nonlinear dynamics associated with submesoscales (<1-10 km) requires new technologies and approaches. Here we introduce the Mini-Autonomous Underwater Explorer (M-AUE), deployed as a swarm of 16 independent vehicles whose 3D trajectories are measured near-continuously, underwater. As the vehicles drift with the ambient flow or execute preprogrammed vertical behaviours, the simultaneous measurements at multiple, known locations resolve the details of the flow within the swarm. We describe the design, construction, control and underwater navigation of the M-AUE. A field programme in the coastal ocean using a swarm of these robots programmed with a depth-holding behaviour provides a unique test of a physical-biological interaction leading to plankton patch formation in internal waves. The performance of the M-AUE vehicles illustrates their novel capability for measuring submesoscale dynamics.

16.
Opt Express ; 14(25): 12473-84, 2006 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19529681

RESUMO

In order to assess the capability to optically identify small marine microbes, both simulations and experiments of angular resolved light scattering (ARLS) were performed. After calibration with 30-nm vesicles characterized by a nearly constant scattering distribution for vertically polarized light (azimuthal angle=90 degrees ), ARLS from suspensions of three types of marine picoplankton (two prokaryotes and one eukaryote) in seawater was measured with a scattering device that consisted of an elliptical mirror, a rotating aperture, and a PMT. Scattered light was recorded with adequate signal-to-noise in the 40-140 degrees . Simulations modeled the cells as prolate spheroids with independently measured dimensions. For the prokaryotes, approximated as homogeneous spheroids, simulations were performed using the RM (Rayleigh-Mie) - I method, a hybrid of the Rayleigh-Debye approximation and the generalized Lorentz-Mie theory. For the picoeukaryote, an extended RM - I method was developed for a coated spheroid with different shell thickness distributions. The picoeukaryote was then modeled as a coated sphere with a spherical core. Good overall agreements were obtained between simulations and experiments. The distinctive scattering patterns of the different species hold promise for an identification system based on ARLS.

17.
Nat Commun ; 7: 12093, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27403715

RESUMO

Microscopic-scale processes significantly influence benthic marine ecosystems such as coral reefs and kelp forests. Due to the ocean's complex and dynamic nature, it is most informative to study these processes in the natural environment yet it is inherently difficult. Here we present a system capable of non-invasively imaging seafloor environments and organisms in situ at nearly micrometre resolution. We overcome the challenges of underwater microscopy through the use of a long working distance microscopic objective, an electrically tunable lens and focused reflectance illumination. The diver-deployed instrument permits studies of both spatial and temporal processes such as the algal colonization and overgrowth of bleaching corals, as well as coral polyp behaviour and interspecific competition. By enabling in situ observations at previously unattainable scales, this instrument can provide important new insights into micro-scale processes in benthic ecosystems that shape observed patterns at much larger scales.

18.
Artigo em Inglês | MEDLINE | ID: mdl-15801313

RESUMO

In this article we consider the adaptive design of waveforms to be used in vascular ultrasound. The advantage of these waveforms, when used with the proposed processing scheme, is that their application results in increased reflected energy, especially when compared with more conventional methods such as a short-gated sinusoid. This increase in reflected energy has potential to permit inferences to be made about wall thickness and vessel diameter from deeper vessels than possible with more traditional techniques. Here, the use of waveforms of the type A(t)ej(kt2), 0 < or = t < or = b, where A(t) is a specially designed envelope and k a sweep frequency, is proposed. Theorems are proved that describe how to choose an A(t) which results in either a maximum of reflected energy signal-to-noise ratio (SNR), or range resolution. The design of the waveform is adaptive in that both A(t) and k are derived in consideration of a specific blood vessel whose transfer function has been obtained experimentally. Numerical simulations illustrate the advantages of using these waveforms as well as the effects of the parameters. A simple experimental implementation of the methodology is presented on a brachial artery. The measurement of the impulse response of the artery is presented in this context. Results indicate that a processing gain in SNR over the instantaneous values obtained from the raw echo waveforms of 11 dB to 14 dB can be obtained via this methodology.


Assuntos
Artéria Braquial/diagnóstico por imagem , Modelos Estruturais , Ultrassonografia/métodos , Simulação por Computador , Humanos , Matemática , Fluxo Pulsátil , Software
19.
PLoS One ; 10(10): e0138690, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26465786

RESUMO

Cuttlefish are cephalopods capable of rapid camouflage responses to visual stimuli. However, it is not always clear to what these animals are responding. Previous studies have found cuttlefish to be more responsive to lateral stimuli rather than substrate. However, in previous works, the cuttlefish were allowed to settle next to the lateral stimuli. In this study, we examine whether juvenile cuttlefish (Sepia officinalis) respond more strongly to visual stimuli seen on the sides versus the bottom of an experimental aquarium, specifically when the animals are not allowed to be adjacent to the tank walls. We used the Sub Sea Holodeck, a novel aquarium that employs plasma display screens to create a variety of artificial visual environments without disturbing the animals. Once the cuttlefish were acclimated, we compared the variability of camouflage patterns that were elicited from displaying various stimuli on the bottom versus the sides of the Holodeck. To characterize the camouflage patterns, we classified them in terms of uniform, disruptive, and mottled patterning. The elicited camouflage patterns from different bottom stimuli were more variable than those elicited by different side stimuli, suggesting that S. officinalis responds more strongly to the patterns displayed on the bottom than the sides of the tank. We argue that the cuttlefish pay more attention to the bottom of the Holodeck because it is closer and thus more relevant for camouflage.


Assuntos
Comportamento Animal/fisiologia , Orientação/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Sepia/fisiologia , Animais , Mimetismo Biológico/fisiologia , Estimulação Luminosa
20.
J Acoust Soc Am ; 121(4): 2060-70, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17471722

RESUMO

The use of multiple angle acoustic scatter to discriminate between two taxa of fluid-like zooplankton, copepods and euphausiids, is explored. Using computer modeling, feature extraction, and subsequent classification, the accuracy in discriminating between the two taxa is characterized via computer simulations. The model applies the distorted wave Born approximation together with a simple system geometry, a linear array, to predict a set of noisy training and test data. Three feature spaces are designed, exploiting the relationship between the shape of the scatterer and angularly varying scattering amplitude, to extract discriminant features from these data. Under the assumption of uniform random length and uniform three-dimensional orientation distributions for each class of scatterers, the performance of several classification algorithms is evaluated. Simulations reveal that the incorporation of multiple angle data leads to a marked improvement in classification performance over single angle methods. The improvement is more substantial using broadband scatter. The simulations indicate that under the stated assumptions, a low classification error can be obtained. The use of multiple angle scatter therefore holds promise to substantially improve the in situ acoustic classification of fluid-like zooplankton using simple observation geometries.


Assuntos
Acústica , Modelos Teóricos , Animais , Oceanos e Mares , Zooplâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA