Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R331-R341, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33470183

RESUMO

Gastric electrical stimulation (GES) is used clinically to promote proximal GI emptying and motility. In acute experiments, we measured duodenal motor responses elicited by GES applied at 141 randomly chosen electrode sites on the stomach serosal surface. Overnight-fasted (H2O available) anesthetized male rats (n = 81) received intermittent biphasic GES for 5 min (20-s-on/40-s-off cycles; I = 0.3 mA; pw = 0.2 ms; 10 Hz). A strain gauge on the serosal surface of the proximal duodenum of each animal was used to evaluate baseline motor activity and the effect of GES. Using ratios of time blocks compared with a 15-min prestimulation baseline, we evaluated the effects of the 5-min stimulation on concurrent activity, on the 10 min immediately after the stimulation, and on the 15-min period beginning with the onset of stimulation. We mapped the magnitude of the duodenal response (three different motility indices) elicited from the 141 stomach sites. Post hoc electrode site maps associated with duodenal responses suggested three zones similar to the classic regions of forestomach, corpus, and antrum. Maximal excitatory duodenal motor responses were elicited from forestomach sites, whereas inhibitory responses occurred with stimulation of the corpus. Moderate excitatory duodenal responses occurred with stimulation of the antrum. Complex, weak inhibitory/excitatory responses were produced by stimulation at boundaries between stomach regions. Patterns of GES efficacies coincided with distributions of previously mapped vagal afferents, suggesting that excitation of the duodenum is strongest when GES electrodes are situated over stomach concentrations of vagal intramuscular arrays, putative stretch receptors in the muscle wall.


Assuntos
Duodeno/inervação , Estimulação Elétrica , Sistema Nervoso Entérico/fisiologia , Esvaziamento Gástrico , Motilidade Gastrointestinal , Estômago/inervação , Animais , Masculino , Fusos Musculares/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Inibição Neural , Pressão , Ratos Sprague-Dawley , Reflexo , Fatores de Tempo , Nervo Vago/fisiologia
2.
J Anat ; 239(4): 903-912, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34142374

RESUMO

Because the stomach in situ has few distinctive surface features and changes shape dramatically with food intake, we have used micro-CT imaging combined with two distinct contrast agents to (1) characterize the pattern of arteries, potential landmarks, on the stomach wall and (2) evaluate how meal-related shape changes affect the size of the different regions. Images generated with a contrast agent injected directly into the heart during perfusion enabled a thorough look at the organizational features of the stomach angioarchitecture. The stomach receives its blood supply primarily from two pairs of vessels, the gastric and gastroepiploic arteries. Each of the three regions of the stomach is delineated by a distinctive combination of arterial fields: the corpus, consistent with its dynamic secretory activity and extensive mucosa, is supplied by extensive arterial trees formed by the left and right gastric arteries, travelling, respectively, on the ventral and dorsal stomach surfaces. These major arteries course circularly from the lesser towards the greater curvature, distally along both left (or ventral) and right (or dorsal) walls of the corpus, and branch rostrally to supply the region. The muscular antrum is characterized by smaller arterial branches arising primarily from the right gastroepiploic artery that follows the distal greater curvature and secondarily from small, distally directed arteries supplied by the large vessels of the left and right gastric arteries. The forestomach, essentially devoid of mucosal tissue and separated from the corpus by the limiting ridge, is vascularized predominantly by a network of small arteries issued from the left gastroepiploic artery coursing around the proximal greater curvature, as well as from higher order and smaller branches issued by the gastric and celiac arteries. These distinctive arterial fields appear to distinguish the major gastric regions, irrespective of the degree of fill of the stomach. Volume assessments of stomach compartments were made from images of iodine-stained stomachs. By varying the delay time between eating and perfusion, we were able to probe the emptying behavior of the stomach and demonstrate that the regions of the stomach empty at different rates, thus changing the relative dimensions of the organ regions. Notably, and despite these shape changes, the gastric arteries appear to form a regular, particularly recognizable, and lateralized pattern corresponding to the corpus that should be of use in guiding surgical and experimental interventions.


Assuntos
Artéria Gástrica , Estômago , Animais , Artérias , Ratos , Estômago/diagnóstico por imagem
3.
Front Neurosci ; 17: 1072779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968498

RESUMO

A thorough understanding of the neuroanatomy of peripheral nerves is required for a better insight into their function and the development of neuromodulation tools and strategies. In biophysical modeling, it is commonly assumed that the complex spatial arrangement of myelinated and unmyelinated axons in peripheral nerves is random, however, in reality the axonal organization is inhomogeneous and anisotropic. Present quantitative neuroanatomy methods analyze peripheral nerves in terms of the number of axons and the morphometric characteristics of the axons, such as area and diameter. In this study, we employed spatial statistics and point process models to describe the spatial arrangement of axons and Sinkhorn distances to compute the similarities between these arrangements (in terms of first- and second-order statistics) in various vagus and pelvic nerve cross-sections. We utilized high-resolution transmission electron microscopy (TEM) images that have been segmented using a custom-built high-throughput deep learning system based on a highly modified U-Net architecture. Our findings show a novel and innovative approach to quantifying similarities between spatial point patterns using metrics derived from the solution to the optimal transport problem. We also present a generalizable pipeline for quantitative analysis of peripheral nerve architecture. Our data demonstrate differences between male- and female-originating samples and similarities between the pelvic and abdominal vagus nerves.

4.
Sci Rep ; 11(1): 23831, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903749

RESUMO

The vagus nerve provides motor, sensory, and autonomic innervation of multiple organs, and electrical vagus nerve stimulation (VNS) provides an adjunctive treatment option for e.g. medication-refractory epilepsy and treatment-resistant depression. The mechanisms of action for VNS are not known, and high-resolution anatomical mapping of the human vagus nerve is needed to better understand its functional organization. Electron microscopy (EM) is required for the detection of both myelinated and unmyelinated axons, but access to well-preserved human vagus nerves for ultrastructural studies is sparse. Intact human vagus nerve samples were procured intra-operatively from deceased organ donors, and tissues were immediately immersion fixed and processed for EM. Ultrastructural studies of cervical and sub-diaphragmatic vagus nerve segments showed excellent preservation of the lamellated wall of myelin sheaths, and the axolemma of myelinated and unmyelinated fibers were intact. Microtubules, neurofilaments, and mitochondria were readily identified in the axoplasm, and the ultrastructural integrity of Schwann cell nuclei, Remak bundles, and basal lamina was also well preserved. Digital segmentation of myelinated and unmyelinated axons allowed for determination of fiber size and myelination. We propose a novel source of human vagus nerve tissues for detailed ultrastructural studies and mapping to support efforts to refine neuromodulation strategies, including VNS.


Assuntos
Fibras Nervosas Mielinizadas/ultraestrutura , Fibras Nervosas Amielínicas/ultraestrutura , Nervo Vago/ultraestrutura , Adulto , Feminino , Humanos , Limite de Detecção , Masculino , Microscopia Eletrônica/métodos , Microscopia Eletrônica/normas , Pessoa de Meia-Idade , Bainha de Mielina/ultraestrutura , Nervo Vago/metabolismo
5.
Ann N Y Acad Sci ; 1454(1): 14-30, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31268562

RESUMO

Brain-gut neural communications have long been considered limited because of conspicuous numerical mismatches. The vagus, the parasympathetic nerve connecting brain and gut, contains thousands of axons, whereas the gastrointestinal (GI) tract contains millions of intrinsic neurons in local plexuses. The numerical paradox was initially recognized in terms of efferent projections, but the number of afferents, which comprise the majority (≈ 80%) of neurites in the vagus, is also relatively small. The present survey of recent morphological observations suggests that vagal terminals, and more generally autonomic and visceral afferent arbors in the stomach as well as throughout the gut, elaborate arbors that are extensive, regionally specialized, polymorphic, polytopic, and polymodal, commonly with multiplicities of receptors and binding sites-smart terminals. The morphological specializations and dynamic tuning of one-to-many efferent projections and many-to-one convergences of contacts onto afferents create a complex architecture capable of extensive peripheral integration in the brain-gut connectome and offset many of the disparities between axon and target numbers. Appreciating this complex architecture can help in the design of therapies for GI disorders.


Assuntos
Encéfalo/fisiologia , Conectoma , Estômago/inervação , Nervo Vago/fisiologia , Vias Aferentes , Animais , Vias Eferentes , Músculo Liso/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA