Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 21(8): 1528-1541, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36529911

RESUMO

The sugars will eventually be exported transporters (SWEET) family of transporters in plants is identified as a novel class of sugar carriers capable of transporting sugars, sugar alcohols and hormones. Functioning in intercellular sugar transport, SWEETs influence a wide range of physiologically important processes. SWEETs regulate the development of sink organs by providing nutritional support from source leaves, responses to abiotic stresses by maintaining intracellular sugar concentrations, and host-pathogen interactions through the modulation of apoplastic sugar levels. Many bacterial and fungal pathogens activate the expression of SWEET genes in species such as rice and Arabidopsis to gain access to the nutrients that support virulence. The genetic manipulation of SWEETs has led to the generation of bacterial blight (BB)-resistant rice varieties. Similarly, while the overexpression of the SWEETs involved in sucrose export from leaves and pathogenesis led to growth retardation and yield penalties, plants overexpressing SWEETs show improved disease resistance. Such findings demonstrate the complex functions of SWEETs in growth and stress tolerance. Here, we review the importance of SWEETs in plant-pathogen and source-sink interactions and abiotic stress resistance. We highlight the possible applications of SWEETs in crop improvement programmes aimed at improving sink and source strengths important for enhancing the sustainability of yield. We discuss how the adverse effects of the overexpression of SWEETs on plant growth may be overcome.


Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Plantas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Açúcares/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
2.
Plant J ; 41(5): 732-43, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15703060

RESUMO

Quantitative data on nitric oxide (NO) production by plants, and knowledge of participating reactions and rate limiting factors are still rare. We quantified NO emission from tobacco (Nicotiana tabacum) wild-type leaves, from nitrate reductase (NR)- or nitrite reductase (NiR)-deficient leaves, from WT- or from NR-deficient cell suspensions and from mitochondria purified from leaves or cells, by following NO emission through chemiluminescence detection. In all systems, NO emission was exclusively due to the reduction of nitrite to NO, and the nitrite concentration was an important rate limiting factor. Using inhibitors and purified mitochondria, mitochondrial electron transport was identified as a major source for reduction of nitrite to NO, in addition to NR. NiR and xanthine dehydrogenase appeared to be not involved. At equal respiratory activity, mitochondria from suspension cells had a much higher capacity to produce NO than leaf mitochondria. NO emission in vivo by NiR-mutant leaves (which was not nitrite limited) was proportional to photosynthesis (high in light +CO(2), low in light -CO(2), or in the dark). With most systems including mitochondrial preparations, NO emission was low in air (and darkness for leaves), but high under anoxia (nitrogen). In contrast, NO emission by purified NR was not much different in air and nitrogen. The low aerobic NO emission of darkened leaves and cell suspensions was not due to low cytosolic NADH, and appeared only partly affected by oxygen-dependent NO scavenging. The relative contribution of NR and mitochondria to nitrite-dependent NO production is estimated.


Assuntos
Mitocôndrias/metabolismo , Nicotiana/metabolismo , Óxido Nítrico/metabolismo , Folhas de Planta/metabolismo , Cinética , Periodicidade , Folhas de Planta/citologia , Nicotiana/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA