Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Oncol ; 58(10): 1440-1445, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31271076

RESUMO

Background: Intensity-modulated proton therapy is sensitive to inter-fraction variations, including density changes along the pencil-beam paths and variations in organ-shape and location. Large day-to-day variations are seen for cervical cancer patients. The purpose of this study was to develop and evaluate a novel method for online selection of a plan from a patient-specific library of prior plans for different anatomies, and adapt it for the daily anatomy. Material and methods: The patient-specific library of prior plans accounting for altered target geometries was generated using a pretreatment established target motion model. Each fraction, the best fitting prior plan was selected. This prior plan was adapted using (1) a restoration of spot-positions (Bragg peaks) by adapting the energies to the new water equivalent path lengths; and (2) a spot addition to fully cover the target of the day, followed by a fast optimization of the spot-weights with the reference point method (RPM) to obtain a Pareto-optimal plan for the daily anatomy. Spot addition and spot-weight optimization could be repeated iteratively. The patient cohort consisted of six patients with in total 23 repeat-CT scans, with a prescribed dose of 45 Gy(RBE) to the primary tumor and the nodal CTV. Using a 1-plan-library (one prior plan based on all motion in the motion model) was compared to choosing from a 2-plan-library (two prior plans based on part of the motion). Results: Applying the prior-plan adaptation method with one iteration of adding spots resulted in clinically acceptable target coverage ( V95%≥95% and V107%≤2% ) for 37/46 plans using the 1-plan-library and 41/46 plans for the 2-plan-library. When adding spots twice, the 2-plan-library approach could obtain acceptable coverage for all scans, while the 1-plan-library approach showed V107%>2% for 3/46 plans. Similar OAR results were obtained. Conclusion: The automated prior-plan adaptation method can successfully adapt for the large day-to-day variations observed in cervical cancer patients.


Assuntos
Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias do Colo do Útero/radioterapia , Feminino , Humanos , Movimento (Física) , Órgãos em Risco/diagnóstico por imagem , Órgãos em Risco/efeitos da radiação , Estudos Prospectivos , Terapia com Prótons/efeitos adversos , Lesões por Radiação/etiologia , Lesões por Radiação/prevenção & controle , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/efeitos adversos , Tomografia Computadorizada por Raios X , Neoplasias do Colo do Útero/diagnóstico por imagem , Útero/diagnóstico por imagem , Útero/efeitos da radiação
2.
Phys Imaging Radiat Oncol ; 24: 7-13, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36092772

RESUMO

Background/purpose: In daily plan adaptation the radiotherapy treatment plan is adjusted just prior to delivery. A simple approach is taking the planning objectives of the reference plan and directly applying these in re-optimization. Here we present a tested method to verify whether daily adaptation without tweaking of the objectives can maintain the plan quality throughout treatment. Materials/methods: For fifteen rectal cancer patients, automated treatment planning was used to generate plans mimicking manual reference plans on the planning scans. For 74 fraction scans (4-5 per patient) an automated plan and a daily adapted plan were generated, where the latter re-optimizes the reference plan objectives without any tweaking. To evaluate the robustness of the daily adaptation, the adapted plans were compared to the autoplanning plans. Results: Median differences between the autoplanning plans on the planning scans and the reference plans were between -1 and 0.2 Gy. The largest interquartile range (1 Gy) was seen for the Lumbar Skin D2%. For the daily scans the PTV D2% and D98% differences between autoplanning and adapted plans were within ± 0.7 Gy, with mean differences within ± 0.3 Gy. Positive differences indicate higher values were obtained using autoplanning. For the Bowelarea + Bladder and the Lumbar Skin the D2% and Dmean differences were all within ± 2.6 Gy, with mean differences between -0.9 and 0.1 Gy. Conclusion: Automated treatment planning can be used to benchmark daily adaptation techniques. The investigated adaptation workflow can robustly perform high quality adaptations without daily adjusting of the patient-specific planning objectives for rectal cancer radiotherapy.

3.
Phys Med ; 92: 15-23, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34826710

RESUMO

BACKGROUND/PURPOSE: Intensity-modulated proton therapy is highly sensitive to anatomical variations. A dose restoration method and a full plan adaptation method have been developed earlier, both requiring several parameter settings. This study evaluates the validity of the previously selected settings by systematically comparing them to alternatives. MATERIALS/METHODS: The dose restoration method takes a prior plan and uses an energy-adaptation followed by a spot-intensity re-optimization to restore the plan to its initial state. The full adaptation method uses an energy-adaptation followed by the addition of new spots and a spot-intensity optimization to fit the new anatomy. We varied: 1) The margins and robustness settings of the prior plan, 2) the spot-addition sample size, i.e. the number of added spots, 3) the spot-addition stopping criterion, and 4) the spot-intensity optimization approach. The last three were evaluated only for the full plan adaptation. Evaluations were done on 88 CT scans of 11 prostate cancer patients. Dose was prescribed as 55 Gy(RBE) to the lymph nodes and seminal vesicles with a boost to 74 Gy(RBE) to the prostate. RESULTS: For the dose restoration method, changing the applied CTV-to-PTV margins and plan robustness in the prior plans yielded insufficient target coverage or increased OAR doses. For the full plan adaptation, more spot-addition iterations and using a different optimization approach resulted in lower OAR doses compared to the default settings while maintaining target coverage. However, the calculation times increased by up to 20 times, making these variations infeasible for online-adaptation. CONCLUSION: We recommend maintaining the default setting for the dose restoration approach. For the full plan adaptation we recommend to focus on fine-tuning the optimization-parameters, and apart from this using the default settings.

4.
Radiother Oncol ; 151: 228-233, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32777242

RESUMO

BACKGROUND/PURPOSE: Intensity-modulated proton therapy (IMPT) is highly sensitive to anatomical variations which can cause inadequate target coverage during treatment. Available mitigation techniques include robust treatment planning and online-adaptive IMPT. This study compares a robust planning strategy to two online-adaptive IMPT strategies to determine the benefit of online adaptation. MATERIALS/METHODS: We derived the robustness settings and safety margins needed to yield adequate target coverage (V95%≥98%) for >90% of 11 patients in a prostate cancer cohort (88 repeat CTs). For each patient, we also adapted a non-robust prior plan using a simple restoration and a full adaptation method. The restoration uses energy-adaptation followed by a fast spot-intensity re-optimization. The full adaptation uses energy-adaptation followed by the addition of new spots and a range-robust spot-intensity optimization. Dose was prescribed as 55 Gy(RBE) to the low-dose target (lymph nodes and seminal vesicles) with a boost to 74 Gy(RBE) to the high-dose target (prostate). Daily patient set-up was simulated using implanted intra-prostatic markers. RESULTS: Margins of 4 and 8 mm around the high- and low-dose target regions, a 6 mm setup error and a 3% range error were found to obtain adequate target coverage for all repeat CTs of 10/11 patients (94.3% of all 88 repeat CTs). Both online-adaptive strategies yielded V95%≥98% and better OAR sparing in 11/11 patients. Median OAR improvements up to 11%-point and 16%-point were observed when moving from robust planning to respectively restoration and full adaption. CONCLUSION: Both full plan adaptation and simple dose restoration can increase OAR sparing besides better conforming to the target criteria compared to robust treatment planning.


Assuntos
Neoplasias da Próstata , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Masculino , Órgãos em Risco , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Glândulas Seminais
5.
Phys Med Biol ; 64(8): 085009, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30921771

RESUMO

The aim of this study was to investigate the feasibility of using prompt gamma (PG) ray emission profiles to monitor changes in dose to the planning target volume (PTV) during pencil beam scanning (PBS) proton therapy as a result of day-to-day variation in patient anatomy. For 11 prostate patients, we simulated treatment plan delivery using the patients' daily anatomy as observed in the planning CT and 7-9 control CT scans, including the detected PG profiles resulting from the 5%, 10%, and 20% most intense proton pencil beams. For each patient, we determined the changes in dosimetric parameters for the high- and low-dose PTVs between the simulations performed using the planning CT scan and the different control CT scans and correlated these to changes in the PG emission profiles. Changes in coverage of the high- and low-dose PTV correlated most strongly with the median and mean absolute PG emission profile shifts of the 5% most intense pencil beams, respectively. With a mean Pearson correlation coefficient of -0.76 (SD: 0.17) for the high-dose PTV and of -0.60 (SD: 0.51) for the low-dose PTV. We showed, as a proof of principle, that PG emission profiles obtained during PBS proton therapy could be used to detect changes in PTV coverage due to day-to-day anatomical variation.


Assuntos
Raios gama , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Masculino , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA