Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Virol ; 98(2): e0167723, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38240590

RESUMO

Rotavirus infection is a leading cause of gastroenteritis in children worldwide; the genome of this virus is composed of 11 segments of dsRNA packed in a triple-layered protein capsid. Here, we investigated the role of nucleolin, a protein with diverse RNA-binding domains, in rotavirus infection. Knocking down the expression of nucleolin in MA104 cells by RNA interference resulted in a remarkable 6.3-fold increase in the production of infectious rhesus rotavirus (RRV) progeny, accompanied by an elevated synthesis of viral mRNA and genome copies. Further analysis unveiled an interaction between rotavirus segment 10 (S10) and nucleolin, potentially mediated by G-quadruplex domains on the viral genome. To determine whether the nucleolin-RNA interaction regulates RRV replication, MA104 cells were transfected with AGRO100, a compound that forms G4 structures and selectively inhibits nucleolin-RNA interactions by blocking the RNA-binding domains. Under these conditions, viral production increased by 1.5-fold, indicating the inhibitory role of nucleolin on the yield of infectious viral particles. Furthermore, G4 sequences were identified in all 11 RRV dsRNA segments, and transfection of oligonucleotides representing G4 sequences in RRV S10 induced a significant increase in viral production. These findings show that rotavirus replication is negatively regulated by nucleolin through the direct interaction with the viral RNAs by sequences forming G4 structures.IMPORTANCEViruses rely on cellular proteins to carry out their replicative cycle. In the case of rotavirus, the involvement of cellular RNA-binding proteins during the replicative cycle is a poorly studied field. In this work, we demonstrate for the first time the interaction between nucleolin and viral RNA of rotavirus RRV. Nucleolin is a cellular protein that has a role in the metabolism of ribosomal rRNA and ribosome biogenesis, which seems to have regulatory effects on the quantity of viral particles and viral RNA copies of rotavirus RRV. Our study adds a new component to the current model of rotavirus replication, where cellular proteins can have a negative regulation on rotavirus replication.


Assuntos
Nucleolina , RNA Viral , Infecções por Rotavirus , Rotavirus , Humanos , Nucleolina/metabolismo , RNA Viral/genética , Rotavirus/fisiologia , Infecções por Rotavirus/virologia , Replicação Viral
2.
J Virol ; 96(14): e0066522, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35762760

RESUMO

Human astrovirus VA1 has been associated with neurological disease in immunocompromised patients, and its recent propagation in cell culture has opened the possibility to study its biology. Unlike classical human astroviruses, VA1 growth was found to be independent of trypsin during virus replication in vitro. In this work, we show that despite its independence on trypsin activation for cell infection, the VA1 capsid precursor protein, of 86 kDa (VP86), is processed intracellularly, and this proteolytic processing is important for astrovirus VA1 infectivity. Antibodies raised against different regions of the capsid precursor showed that the polyprotein can be processed starting at either its amino- or carboxy-terminal end, and they allowed us to identify those proteins of about 33 (VP33) and 38 (VP38) kDa constitute the core and the spike proteins of the mature infectious virus particles, respectively. The amino-terminal end of the spike protein was found to be Thr-348. Whether the protease involved in intracellular cleavage of the capsid precursor is of viral or cellular origin remains to be determined, but the cleavage is independent of caspases. Also, trypsin is able to degrade the capsid precursor but has no effect on VP33 and VP38 proteins when assembled into virus particles. These studies provide the basis for advancement of the knowledge of astrovirus VA1 cell entry and replication. IMPORTANCE Human astrovirus VA1 has been associated with neurological disease in immunocompromised patients. Its recent propagation in cell culture has facilitated the study of its biology. In this work, we show that despite the ability of this virus to grow in the absence of trypsin, a marked feature of human classical astroviruses, the capsid precursor protein of astrovirus VA1 is cleaved intracellularly to yield the mature infectious particles, formed by two polypeptides, VP33 that constitutes the core domain of the virus particle, and VP38 that forms the spike of the virus. These studies provide a platform to advance our knowledge on astrovirus VA1 cell entry and replication.


Assuntos
Infecções por Astroviridae , Proteínas do Capsídeo , Mamastrovirus , Precursores de Proteínas , Infecções por Astroviridae/virologia , Células CACO-2 , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Humanos , Espaço Intracelular/virologia , Mamastrovirus/fisiologia , Precursores de Proteínas/metabolismo , Tripsina/metabolismo
3.
Inorg Chem ; 61(20): 7729-7745, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35522899

RESUMO

The synthesis, full characterization, photochemical properties, and cytotoxic activity toward cisplatin-resistant cancer cell lines of new semisquaraine-type Pt(II) complexes are presented. The synthesis of eight semisquaraine-type ligands has been carried out by means of an innovative, straightforward methodology. A thorough structural NMR and X-ray diffraction analysis of the new ligands and complexes has been done. Density functional theory calculations have allowed to assign the trans configuration of the platinum center. Through the structural modification of the ligands, it has been possible to synthesize some complexes, which have turned out to be photoactive at wavelengths that allow their activation in cell cultures and, importantly, two of them show remarkable solubility in biological media. Photodegradation processes have been studied in depth, including the structural identification of photoproducts, thus justifying the changes observed after irradiation. From biological assessment, complexes C7 and C8 have been demonstrated to behave as promising photoactivatable compounds in the assayed cancer cell lines. Upon photoactivation, both complexes are capable of inducing a higher cytotoxic effect on the tested cells compared with nonphotoactivated compounds. Among the observed results, it is remarkable to note that C7 showed a PI > 50 in HeLa cells, and C8 showed a PI > 40 in A2780 cells, being also effective over cisplatin-resistant A2780cis cells (PI = 7 and PI = 4, respectively). The mechanism of action of these complexes has been studied, revealing that these photoactivated platinum complexes would actually present a combined mode of action, a therapeutically potential advantage.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/química , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Células HeLa , Humanos , Ligantes , Platina/química , Platina/farmacologia
4.
Soft Matter ; 17(4): 1028-1036, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33289743

RESUMO

Single-walled carbon nanotube (SWCNT) transmembrane channel formation in a pure 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) bilayer, and the spontaneous internalization of single-stranded DNA (ssDNA) into the formed pore were simulated. A combination of computational techniques, Dissipative Particle Dynamics-Monte Carlo hybrid simulations and quantum mechanical calculations at the hybrid-DFT level, was used as a new proposal to perform DPD simulations granting specific chemical identity to the model particles. The simulated transmembrane channels showed that, in the case of pristine SWCNTs and upon increasing the nanotube length, a higher tilt angle with respect to the bilayer normal is observed and more time is needed for the nanotube to stabilize. On the other hand, for SWCNTs with polar rims an almost perpendicular orientation is preferred with less than 15° of tilt with respect to the bilayer normal once the nanotubes have pierced both monolayers. These findings are supported by experimental observations where CNTs of average inner diameters of 1.51 ± 0.21 nm and lengths in the 5-15 nm range were inserted in DOPC membranes [J. Geng, et al., Nature, 2014, 514(7524), 612-615]. Moreover, the narrower the SWCNTs, the slower the spontaneous internalization of ssDNA becomes, and ssDNA ends hydrophobically trapped inside the artificial pore. A dependence on the nucleotide content is found indicating that the higher the presence of adenine and thymine in the ssDNA chains the slower the internalization becomes, in agreement with the experimental [A. M. Ababneh, et al., Biophys. J., 2003, 85(2), 1111-1127] and predicted solvation tendency in water for nucleic acid bases.


Assuntos
Nanotubos de Carbono , DNA de Cadeia Simples , Água
5.
J Clin Microbiol ; 58(10)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32703816

RESUMO

As part of any plan to lift or ease the confinement restrictions that are in place in many different countries, there is an urgent need to increase the capacity of laboratory testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Detection of the viral genome through reverse transcription-quantitative PCR (RT-qPCR) is the gold standard for this virus; however, the high demand of the materials and reagents needed to sample individuals, purify the viral RNA, and perform the RT-qPCR has resulted in a worldwide shortage of several of these supplies. Here, we show that directly lysed saliva samples can serve as a suitable source for viral RNA detection that is less expensive and can be as efficient as the classical protocol, which involves column purification of the viral RNA. In addition, it bypasses the need for swab sampling, decreases the risk of the health care personnel involved in the testing process, and accelerates the diagnostic procedure.


Assuntos
Betacoronavirus/isolamento & purificação , Saliva/virologia , Manejo de Espécimes/métodos , Betacoronavirus/genética , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Testes Diagnósticos de Rotina , Genoma Viral/genética , Humanos , Nasofaringe/virologia , Orofaringe/virologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Carga Viral
6.
J Org Chem ; 85(11): 7247-7257, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32401518

RESUMO

Herein, we perform for the first time a preliminary NMR and computational study of the spiroglycol structure. Spiroglycol is a highly symmetrical molecule, but it should be chiral due to the presence of a chiral axis. The presence of two enantiomers was demonstrated performing NMR enantiodifferentiation experiments using α,α'-bis(trifluoromethyl)-9,10-anthracenedimethanol (ABTE) as a chiral solvating agent (CSA). The addition of 0.6 equiv of ABTE allows the differentiation of several spiroglycol proton signals. The lack of resolution observed in the proton spectrum can be tackled through the corresponding 13C NMR spectrum where a significant enantiodifferentiation at the spirocarbon atom was observed. In order to physically separate both enantiomers, a SPG derivatization with camphorsulfonic acid and Mosher's acid was performed affording the corresponding diastereoisomeric ester mixtures. Computations performed with the Gaussian16 package showed that the enantiodifferentiation is mainly due to the different compound thermodynamics stability.

7.
Langmuir ; 33(50): 14502-14512, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29199832

RESUMO

A gold nanoparticle (AuNP) conjugate formed with 11-mercaptoundecanoic acid (MUA) and thiolated polyethylene glycol (SH-PEG) is simulated using dissipative particle dynamics (DPD) methods, obtaining an excellent agreement with previous experimental observations. The simulations cover the isolated components (AuNP, MUA, and SH-PEG), as well as pairs of components, and finally the all three components at the same time. In this latter case, changes in the order of addition of MUA and SH-PEG over the AuNP are also considered. The AuNP is formed by independent gold beads and keeps an almost spherical shape throughout the simulation. MUA forms micelles of four to six MUA units when dispersed in water, while SH-PEG stays individually and well solvated. When exposed to AuNP, both molecules show a tendency to form patches on the surface. SH-PEG displays two different conformations (radial and tangential) depending on its relative concentration and the presence of other molecules at the NP surface. When combined at subsaturation concentrations, MUA arrives faster to the AuNP surface than SH-PEG and forms patches while SH-PEG occupies the remaining free surface. In these conditions, the order of addition of the different components partially alters these results. When SH-PEG is added over an already formed MUA/AuNP partial layer, it adopts a radial conformation over the MUA formed patches; on the contrary, if MUA is added over an already formed SH-PEG/AuNP partial layer, much less SH-PEGs adopt a radial conformation and MUA patches are significantly smaller.

8.
Org Biomol Chem ; 13(6): 1680-9, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25465648

RESUMO

The conformations of some 'giant' cyclodextrins (CDn, n = 40, 70, 85, 100) were examined by molecular dynamic simulations using the Glycam06 force field. CD14 and CD26, the largest cyclodextrins, for which crystallographic data are available, were also studied as reference structures. Principal component analysis was used for the analyses of the simulation trajectories. In cases where band-flips were not present in the starting geometry (e.g. CD40), flips appeared later during the conformational search. The results for CDn (n = 14, 26, 40) confirmed an interesting observation for the distribution of band-flips along the perimeters of the macrorings, namely, band-flips separate portions of lengths of about six or twelve glucoses. This allows the formation of energetically favorable small loops of six-seven glucoses or the creation of short two-turns single helices that further enhance the stability of the structures. It was found that flip dihedrals define distributions of fragment lengths 12-6, 12-12, and 12-12-6 residues in the larger CDs (CD70, CD85, CD100). Contributions from 77% (CD40) to 88% (CD26) are from the first three highest-eigenvalue principal components, i.e., a limited number of modes determine the overall deformations of the macrorings. The flexibility of the macrorings increases, going from CD40 to the CDs, with higher degrees of polymerization. CD14 and CD26 present interesting cases - CD26 manifests domination of one deformation mode (ca. 72%), whereas CD14 demonstrates significantly higher flexibility. These results confirm our earlier conclusion, namely, LR-CDs may have more than one cavity. Thus they have the potential to accommodate more than one substrate molecule, as well as larger species by an 'induced fit' mechanism.


Assuntos
Ciclodextrinas/química , Simulação de Dinâmica Molecular , Ciclodextrinas/síntese química , Estrutura Molecular , Análise de Componente Principal
9.
Molecules ; 20(6): 9862-78, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26023943

RESUMO

The association constants of the complexes formed by two hosts containing pyrrole, amide and azine (pyridine and 1,8-naphthyridine) groups and six guests, all monoanions (Cl-, CH3CO2-, NO3-, H2PO4-, BF4-, PF6-), have been determined using NMR titrations. The X-ray crystal structure of the host N2,N5-bis(6-methylpyridin-2-yl)-3,4-diphenyl-1H-pyrrole- 2,5-dicarboxamide (1) has been solved (P21/c monoclinic space group). B3LYP/6-31G(d,p) and calculations were carried out in an attempt to rationalize the trends observed in the experimental association constants.


Assuntos
Amidas/química , Ânions/análise , Naftiridinas/química , Piridinas/química , Pirróis/química , Amidas/síntese química , Cristalografia por Raios X , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Naftiridinas/síntese química , Piridinas/síntese química , Pirróis/síntese química , Teoria Quântica , Termodinâmica
10.
J Virol ; 87(6): 3003-17, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23269802

RESUMO

Open reading frame 2 (ORF2) of the feline calicivirus (FCV) genome encodes a capsid precursor that is posttranslationally processed to release the mature capsid protein (VP1) and a small protein of 124 amino acids, designated the leader of the capsid (LC). To investigate the role of the LC protein in the virus life cycle, mutations and deletions were introduced into the LC coding region of an infectious FCV cDNA clone. Three cysteine residues that are conserved among all vesivirus LC sequences were found to be critical for the recovery of FCV with a characteristic cytopathic effect in feline kidney cells. A cell-rounding phenotype associated with the transient expression of wild-type and mutagenized forms of the LC correlated with the cytopathic and growth properties of the corresponding engineered viruses. The host cellular protein annexin A2 was identified as a binding partner of the LC protein, consistent with a role for the LC in mediating host cell interactions that alter the integrity of the cell and enable virus spread.


Assuntos
Calicivirus Felino/patogenicidade , Proteínas do Capsídeo/metabolismo , Efeito Citopatogênico Viral , Fatores de Virulência/metabolismo , Animais , Anexina A2/metabolismo , Proteínas do Capsídeo/genética , Gatos , Linhagem Celular , Interações Hospedeiro-Patógeno , Mutação Puntual , Ligação Proteica , Processamento de Proteína Pós-Traducional , Deleção de Sequência , Fatores de Virulência/genética
11.
Virus Genes ; 48(1): 96-110, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24217871

RESUMO

Feline calicivirus (FCV) is a common cause of mild to severe upper respiratory tract disease (URTD) in cats. FCV strain 21223 was isolated from a kitten with severe pneumonia in a disease outbreak with unusually high mortality (35 %) that occurred in a Missouri feline colony in 1995-1996. Phylogenetic analysis of the genome sequence of strain 21223 indicated the emergence of a new FCV strain. Analysis of the full-length genome sequence of a closely related (99.5 % nucleotide identity) strain, 3786, obtained from an asymptomatic animal in the same colony four months later, showed the presence of seven amino acid substitutions, with six of them located in the VP1 capsid sequence encoded by ORF2. Comparative analysis of the E-region sequences (426-521 aa ORF2) presumably involved in virus-host cell receptor interactions did not identify amino acid substitutions unique to the virulent strain. We determined the complete genome sequences of four virus isolates that were collected in regional catteries in the months following the outbreak that were associated with different manifestations of the disease (URTD, chronic stomatitis, and gingivitis). We show that genetically distinct FCV strains were cocirculating in the area, and no apparent correlation could be made between overall sequence and observed disease.


Assuntos
Infecções por Caliciviridae/veterinária , Calicivirus Felino/classificação , Calicivirus Felino/genética , Doenças do Gato/patologia , Doenças do Gato/virologia , Animais , Doenças Assintomáticas , Infecções por Caliciviridae/patologia , Infecções por Caliciviridae/virologia , Calicivirus Felino/isolamento & purificação , Proteínas do Capsídeo/genética , Gatos , Análise por Conglomerados , Surtos de Doenças , Genoma Viral , Missouri/epidemiologia , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência
12.
Magn Reson Chem ; 52(8): 440-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24889875

RESUMO

The configurational and conformational structure of alfentanil hydrochloride (1) was studied by nuclear magnetic resonance and theoretical calculations. Compound 1 is best described by equilibrium between two stereoisomeric piperidinium rings with the N-substituent always being in equatorial position. Nuclear magnetic resonance spectra demonstrate that, depending on the solvent, 1 adopts the conformation with an axial methoxymethylene group. Computations were crucial in determining the importance of the transannular attractive interaction between the positive charge at the piperidinium N-atom and the methoxymethyl group in position 4.


Assuntos
Alfentanil/química , Analgésicos Opioides/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Conformação Molecular
13.
Vaccines (Basel) ; 12(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39203954

RESUMO

Gold nanoparticles (AuNPs) decorated with antigens have recently emerged as promising tools for vaccine development due to their innate ability to provide stability to antigens and modulate immune responses. In this study, we have engineered deactivated virus-like particles (VLPs) by precisely functionalizing gold cores with coronas comprising the full SARS-CoV-2 spike protein (S). Using BALB/c mice as a model, we investigated the immunogenicity of these S-AuNPs-VLPs. Our results demonstrate that S-AuNPs-VLPs consistently enhanced antigen-specific antibody responses compared to the S protein free in solution. This enhancement included higher binding antibody titers, higher neutralizing capacity of antibodies, and stronger T-cell responses. Compared to the mRNA COVID-19 vaccine, where the S protein is synthesized in situ, S-AuNPs-VLPs induced comparable binding and neutralizing antibody responses, but substantially superior T-cell responses. In conclusion, our study highlights the potential of conjugated AuNPs as an effective antigen-delivery system for protein-based vaccines targeting a broad spectrum of infectious diseases and other emergent viruses.

14.
J Virol ; 86(13): 7414-26, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22532688

RESUMO

Noroviruses are major etiological agents of acute viral gastroenteritis. In 2002, a GII.4 variant (Farmington Hills cluster) spread so rapidly in the human population that it predominated worldwide and displaced previous GII.4 strains. We developed and characterized a panel of six monoclonal antibodies (MAbs) directed against the capsid protein of a Farmington Hills-like GII.4 norovirus strain that was associated with a large hospital outbreak in Maryland in 2004. The six MAbs reacted with high titers against homologous virus-like particles (VLPs) by enzyme-linked immunoassay but did not react with denatured capsid protein in immunoblots. The expression and self-assembly of newly developed genogroup I/II chimeric VLPs showed that five MAbs bound to the GII.4 protruding (P) domain of the capsid protein, while one recognized the GII.4 shell (S) domain. Cross-competition assays and mutational analyses showed evidence for at least three distinct antigenic sites in the P domain and one in the S domain. MAbs that mapped to the P domain but not the S domain were able to block the interaction of VLPs with ABH histo-blood group antigens (HBGA), suggesting that multiple antigenic sites of the P domain are involved in HBGA blocking. Further analysis showed that two MAbs mapped to regions of the capsid that had been associated with the emergence of new GII.4 variants. Taken together, our data map antibody and HBGA carbohydrate binding to proximal regions of the norovirus capsid, showing that evolutionary pressures on the norovirus capsid protein may affect both antigenic and carbohydrate recognition phenotypes.


Assuntos
Sistema ABO de Grupos Sanguíneos/metabolismo , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/metabolismo , Norovirus/patogenicidade , Mapeamento de Interação de Proteínas , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Infecções por Caliciviridae/epidemiologia , Proteínas do Capsídeo/genética , Surtos de Doenças , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Genótipo , Humanos , Maryland/epidemiologia , Camundongos , Camundongos Endogâmicos BALB C , Norovirus/genética , Norovirus/isolamento & purificação , Ligação Proteica
15.
J Virol ; 85(16): 8056-68, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21680514

RESUMO

Cellular proteins play many important roles during the life cycle of all viruses. Specifically, host cell nucleic acid-binding proteins interact with viral components of positive-stranded RNA viruses and regulate viral translation, as well as RNA replication. Here, we report that nucleolin, a ubiquitous multifunctional nucleolar shuttling phosphoprotein, interacts with the Norwalk virus and feline calicivirus (FCV) genomic 3' untranslated regions (UTRs). Nucleolin can also form a complex in vitro with recombinant Norwalk virus NS6 and -7 (NS6/7) and can be copurified with the analogous protein from feline calicivirus (p76 or NS6/7) from infected feline kidney cells. Nucleolin RNA levels or protein were not modified during FCV infection; however, as a consequence of the infection, nucleolin was seen to relocalize from the nucleoli to the nucleoplasm, as well as to the perinuclear area where it colocalizes with the feline calicivirus NS6/7 protein. In addition, antibodies to nucleolin were able to precipitate viral RNA from feline calicivirus-infected cells, indicating a direct or indirect association of nucleolin with the viral RNA during virus replication. Small interfering RNA (siRNA)-mediated knockdown of nucleolin resulted in a reduction of the cytopathic effect and virus yield in CrFK cells. Taken together, these results demonstrate that nucleolin is a nucleolar component that interacts with viral RNA and NS6/7 and is required for feline calicivirus replication.


Assuntos
Regiões 3' não Traduzidas , Calicivirus Felino/fisiologia , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Animais , Calicivirus Felino/genética , Calicivirus Felino/metabolismo , Gatos , Linhagem Celular , Rim/virologia , Vírus Norwalk/genética , Vírus Norwalk/metabolismo , Peptídeo Hidrolases , Fosfoproteínas/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Virais/genética , Nucleolina
16.
Virol J ; 9: 297, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23190937

RESUMO

BACKGROUND: Vesiviruses in the family Caliciviridae infect a broad range of animal hosts including mammals, birds, fish, amphibians and reptiles. The vesivirus Cro1 strains were isolated from diseased snakes in the San Diego zoo in 1978 and reported as the first caliciviruses found in reptiles. The goal of this study was to characterize the Cro1 strain 780032I that was isolated in cell culture from a rock rattlesnake (Crotalus lepidus) in the original outbreak. RESULTS: We re-amplified the original virus stock in Vero cells, and determined its full-length genome sequence. The Cro1 genome is 8296 nucleotides (nt) in length and has a typical vesivirus organization, with three open reading frames (ORF), ORF1 (5643 nt), ORF2 (2121 nt), and ORF3 (348 nt) encoding a nonstructural polyprotein, the major capsid protein precursor, and a minor structural protein, respectively. Phylogenetic analysis of the full-length genome sequence revealed that the Cro1 virus clustered most closely with the VESV species of the genus Vesivirus, but was genetically distinct (82-83% identities with closest strains). CONCLUSIONS: This is the first description of a full-length genome sequence from a reptile calicivirus (Cro1). The availability of the Cro1 genome sequence should facilitate investigation of the molecular mechanisms involved in Cro1 virus evolution and host range.


Assuntos
Infecções por Caliciviridae/veterinária , Crotalus/virologia , Surtos de Doenças , Genoma Viral , RNA Viral/genética , Análise de Sequência de DNA , Vesivirus/genética , Animais , Animais de Zoológico , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , California , Chlorocebus aethiops , Análise por Conglomerados , Dados de Sequência Molecular , Filogenia , Homologia de Sequência do Ácido Nucleico , Células Vero , Vesivirus/isolamento & purificação , Cultura de Vírus
17.
Sci Rep ; 12(1): 13926, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977997

RESUMO

Nanoparticles (NPs) show promising applications in biomedicine, catalysis, and energy harvesting. This applicability relies on controlling the material's features at the nanometer scale. Surfactants, a unique class of surface-active molecules, have a remarkable ability to tune NPs activity; provide specific functions, avoid their aggregation, and create stable colloidal solutions. Surfactants also control nanoparticles' nucleation and growth processes by modifying nuclei solubility and surface energy. While nucleation seems independent from the surfactant, NP's growth depends on it. NP`s size is influenced by the type of functional group (C, O, S or N), length of its C chain and NP to surfactant ratio. In this paper, gold nanoparticles (Au NPs) are taken as model systems to study how nucleation and growth processes are affected by the choice of surfactants by Dissipative Particle Dynamics (DPD) simulations. DPD has been mainly used for studying biochemical structures, like lipid bilayer models. However, the study of solid NPs, and their conjugates, needs the introduction of a new metallic component. To represent the collective phenomena of these large systems, their degrees of freedom are reduced by Coarse-Grained (CG) models. DPD behaved as a powerful tool for studying complex systems and shedding some light on some experimental observations, otherwise difficult to explain.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Surfactantes Pulmonares , Ouro/química , Bicamadas Lipídicas , Nanopartículas Metálicas/química , Nanopartículas/química , Tensoativos/química
18.
PLoS One ; 17(1): e0263114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35077513

RESUMO

In many countries a second wave of infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has occurred, triggering a shortage of reagents needed for diagnosis and compromising the capacity of laboratory testing. There is an urgent need to develop methods to accelerate the diagnostic procedures. Pooling samples represents a strategy to overcome the shortage of reagents, since several samples can be tested using one reaction, significantly increasing the number and speed with which tests can be carried out. We have reported the feasibility to use a direct lysis procedure of saliva as source for RNA to SARS-CoV-2 genome detection by reverse transcription quantitative-PCR (RT-qPCR). Here, we show that the direct lysis of saliva pools, of either five or ten samples, does not compromise the detection of viral RNA. In addition, it is a sensitive, fast, and inexpensive method that can be used for massive screening, especially considering the proximity of the reincorporation of activities in universities, offices, and schools.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Saliva/virologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teste de Ácido Nucleico para COVID-19/normas , Humanos , Programas de Rastreamento/métodos , Programas de Rastreamento/normas , Quarentena/normas , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade , Sensibilidade e Especificidade
19.
Materials (Basel) ; 14(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525424

RESUMO

Concrete has become the most common construction material, showing, among other advantages, good behaviour when subjected to high temperatures. Nevertheless, concrete is usually reinforced with elements of other materials such as steel in the form of rebars or fibres. Thus, the behaviour under high temperatures of these other materials can be critical for structural elements. In addition, concrete spalling occurs when concrete is subjected to high temperature due to internal pressures. Micro polypropylene fibres (PP) have shown to be effective for reducing such spalling, although this type of fibres barely improves any of the mechanical properties of the element. Hence, a combination of PP with steel rebars or fibres can be effective for the structural design of elements exposed to high temperatures. New polyolefin fibres (PF) have become an alternative to steel fibres. PF meet the requirements of the standards to consider the contributions of the fibres in the structural design. However, there is a lack of evidence about the behaviour of PF and elements made of polyolefin fibre reinforced concrete (PFRC) subjected to high temperatures. Given that these polymer fibres would be melt above 250 °C, the behaviour in the intermediate temperatures was assessed in this study. Uni-axial tests on individual fibres and three-point bending tests of PFRC specimens were performed. The results have shown that the residual load-bearing capacity of the material is gradually lost up to 200 °C, though the PFRC showed structural performance up to 185 °C.

20.
Nano Today ; 362021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34394703

RESUMO

HIV represents a persistent infection which negatively alters the immune system. New tools to reinvigorate different immune cell populations to impact HIV are needed. Herein, a novel nanotool for the specific enhancement of the natural killer (NK) immune response towards HIV-infected T-cells has been developed. Bispecific Au nanoparticles (BiAb-AuNPs), dually conjugated with IgG anti-HIVgp120 and IgG anti-human CD16 antibodies, were generated by a new controlled, linker-free and cooperative conjugation method promoting the ordered distribution and segregation of antibodies in domains. The cooperatively-adsorbed antibodies fully retained the capabilities to recognize their cognate antigen and were able to significantly enhance cell-to-cell contact between HIV-expressing cells and NK cells. As a consequence, the BiAb-AuNPs triggered a potent cytotoxic response against HIV-infected cells in blood and human tonsil explants. Remarkably, the BiAb-AuNPs were able to significantly reduce latent HIV infection after viral reactivation in a primary cell model of HIV latency. This novel molecularly-targeted strategy using a bispecific nanotool to enhance the immune system represents a new approximation with potential applications beyond HIV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA