Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(20): 11834-11854, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34751402

RESUMO

RECQ1 is the shortest among the five human RecQ helicases comprising of two RecA like domains, a zinc-binding domain and a RecQ C-terminal domain containing the winged-helix (WH). Mutations or deletions on the tip of a ß-hairpin located in the WH domain are known to abolish the unwinding activity. Interestingly, the same mutations on the ß-hairpin of annealing incompetent RECQ1 mutant (RECQ1T1) have been reported to restore its annealing activity. In an attempt to unravel the strand annealing mechanism, we have crystallized a fragment of RECQ1 encompassing D2-Zn-WH domains harbouring mutations on the ß-hairpin. From our crystal structure data and interface analysis, we have demonstrated that an α-helix located in zinc-binding domain potentially interacts with residues of WH domain, which plays a significant role in strand annealing activity. We have shown that deletion of the α-helix or mutation of specific residues on it restores strand annealing activity of annealing deficient constructs of RECQ1. Our results also demonstrate that mutations on the α-helix induce conformational changes and affects DNA stimulated ATP hydrolysis and unwinding activity of RECQ1. Our study, for the first time, provides insight into the conformational requirements of the WH domain for efficient strand annealing by human RECQ1.


Assuntos
DNA de Cadeia Simples/química , RecQ Helicases/química , Sítios de Ligação , DNA de Cadeia Simples/metabolismo , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , RecQ Helicases/genética , RecQ Helicases/metabolismo , Zinco/metabolismo
2.
Curr Genomics ; 18(1): 75-92, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28503091

RESUMO

DNA topoisomerases are important cellular enzymes found in almost all types of living cells (eukaryotic and prokaryotic). These enzymes are essential for various DNA metabolic processes e.g. replication, transcription, recombination, chromosomal decatenation etc. These enzymes are important molecular drug targets and inhibitors of these enzymes are widely used as effective anticancer and antibacterial drugs. However, topoisomerase inhibitors have some therapeutic limitations and they exert serious side effects during cancer chemotherapy. Thus, development of novel anticancer topoisomerase inhibitors is necessary for improving cancer chemotherapy. Nature serves as a repertoire of structurally and chemically diverse molecules and in the recent years many DNA topoisomerase inhibitors have been identified from natural sources. The present review discusses anticancer properties and therapeutic importance of eighteen recently identified natural topoisomerase inhibitors (from the year 2009 to 2015). Structural characteristics of these novel inhibitors provide backbones for designing and developing new anticancer drugs.

3.
Biochim Biophys Acta ; 1853(5): 1195-204, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25746763

RESUMO

Cancer cells with defective DNA decatenation checkpoint can be selectively targeted by the catalytic inhibitors of DNA topoisomerase IIα (topo IIα) enzyme. Upon treatment with catalytic topo IIα inhibitors, cells with defective decatenation checkpoint fail to arrest their cell cycle in G2 phase and enter into M phase with catenated and under-condensed chromosomes resulting into impaired mitosis and eventually cell death. In the present work we analyzed decatenation checkpoint in five different colon cancer cell lines (HCT116, HT-29, Caco2, COLO 205 and SW480) and in one non-cancerous cell line (HEK293T). Four out of the five colon cancer cell lines i.e. HCT116, HT-29, Caco2, and COLO 205 were found to be compromised for the decatenation checkpoint function at different extents, whereas SW480 and HEK293T cell lines were found to be proficient for the checkpoint function. Upon treatment with ICRF193, decatenation checkpoint defective cell lines failed to arrest the cell cycle in G2 phase and entered into M phase without proper chromosomal decatenation, resulting into the formation of tangled mass of catenated and under-condensed chromosomes. Such cells underwent mitotic catastrophe and rapid apoptosis like cell death and showed higher sensitivity for ICRF193. Our study suggests that catalytic inhibitors of topoisomerase IIα are promising therapeutic agents for the treatment of colon cancers with defective DNA decatenation checkpoint.


Assuntos
Biocatálise/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Fase G2/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromossomos Humanos/metabolismo , Dicetopiperazinas , Etoposídeo/farmacologia , Células HEK293 , Humanos , Mitose/efeitos dos fármacos , Índice Mitótico , Piperazinas/farmacologia , Ensaio Tumoral de Célula-Tronco
4.
J Inorg Biochem ; 249: 112369, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37776829

RESUMO

Quinalizarin, an analogue of anthracycline anticancer agents, is an anticancer agent itself. A CuII complex was prepared and characterized by elemental analysis, UV-Vis & IR spectroscopy, mass spectrometry, EPR and DFT. The intention behind the preparation of the complex was to increase cellular uptake, compare its binding with DNA against that of quinalizarin, modulation of semiquinone formation, realization of human DNA topoisomerase I & human DNA topoisomerase II inhibition and observation of anticancer activity. While the first two attributes of complex formation lead to increased efficacy, decrease in semiquinone generation could results in a compromise with efficacy. Inhibition of human DNA topoisomerase makes up this envisaged compromise in free radical activity since the complex shows remarkable ability to disrupt activities of human DNA topoisomerase I and II. The complex unlike quinalizarin, does not catalyze flow of electrons from NADH to O2 to the extent known for quinalizarin. Hence, decrease in semiquinone or superoxide radical anion could make modified quinalizarin [as CuII complex] less efficient in free radical pathway. However, it would be less cardiotoxic and that would be advantageous to qualify it as a better anticancer agent. Although binding to calf thymus DNA was comparable to quinalizarin, it was weaker than anthracyclines. Low cost of quinalizarin could justify consideration as a substitute for anthracyclines but the study revealed IC50 of quinalizarin/CuII-quinalizarin was much higher than anthracyclines or their complexes. Even then, there is a possibility that CuII-quinalizarin could be an improved and less costly form of quinalizarin as anticancer agent.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , DNA Topoisomerases Tipo I/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antibióticos Antineoplásicos , Inibidores da Topoisomerase II/farmacologia , Superóxidos/metabolismo , Antraciclinas , Radicais Livres/metabolismo , Cobre/química , Complexos de Coordenação/química
5.
ACS Omega ; 3(8): 10255-10266, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459155

RESUMO

Quinalizarin (THAQ), a hydroxy-9,10-anthraquinone analogue of the family of anthracycline anticancer drugs and an inhibitor of protein kinase, was observed for its anticancer activity. Because apart from showing anticancer activity, anthracyclines and their analogues also show cardiotoxic side effects, believed to be addressed through metal complex formation; an effort was made to realize this by preparing a CoII complex of THAQ. The aim of this study was to find out if complex formation leads to a decrease in the generation of intermediates that are responsible for toxic side effects. However, because this also meant that efficacy on cancer cells would be compromised, studies were undertaken on two cancer cell lines, namely, acute lymphoblastic leukemia (ALL) MOLT-4 and HCT116 cells. The complex decreases the flow of electrons from NADH to molecular oxygen (O2) in the presence of NADH dehydrogenase forming less semiquinone than THAQ. It showed increased affinity toward DNA with binding constant values remaining constant over the physiological pH range unlike THAQ (for which decrease in binding constant values with increase in pH was observed). The complex is probably a human DNA topoisomerase I and human DNA topoisomerase II poison acting by stabilizing the covalent topoisomerase-cleaved DNA adduct, a phenomenon not observed for THAQ. Activity of the compounds on cancer cells suggests that THAQ was more effective on ALL MOLT-4 cells, whereas the complex performed better on HCT116 cells. Results suggest that the formation of semiquinone probably dominates the action because of THAQ, whereas the performance of the complex is attributed to increased DNA binding, inhibition of topoisomerase, and so forth. Inspite of a decrease in the generation of superoxide by the complex, it did not hamper efficacy on either cell line, probably compensated by improved DNA binding and inhibition of topoisomerase enzymes which are positive attributes of complex formation. A decrease in superoxide formation suggests that the complex could be less cardiotoxic, thus increasing its therapeutic index.

7.
Sci Rep ; 5: 12082, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26189912

RESUMO

DNA topoisomerase II inhibitors e.g. doxorubicin and etoposide are currently used in the chemotherapy for acute lymphoblastic leukemia (ALL). These inhibitors have serious side effects during the chemotherapy e.g. cardiotoxicity and secondary malignancies. In this study we show that sulfonoquinovosyl diacylglyceride (SQDG) isolated from Azadirachta indica exerts potent anti-ALL activity both in vitro and in vivo in nude mice and it synergizes with doxorubicin and etoposide. SQDG selectively targets ALL MOLT-4 cells by inhibiting catalytic activity of topoisomerase I enzyme and inducing p53 dependent apoptotic pathway. SQDG treatment induces recruitment of ATR at chromatin and arrests the cells in S-phase. Down-regulation of topoisomerase I or p53 renders the cells less sensitive for SQDG, while ectopic expression of wild type p53 protein in p53 deficient K562 cells results in chemosensitization of the cells for SQDG. We also show that constant ratio combinations of SQDG and etoposide or SDQG and doxorubicin exert synergistic effects on MOLT-4 cell killing. This study suggests that doses of etoposide/doxorubicin can be substantially reduced by combining SQDG with these agents during ALL chemotherapy and side effects caused can be minimized. Thus dual targeting of topoisomerase I and II enzymes is a promising strategy for improving ALL chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Glicolipídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Etoposídeo/farmacologia , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Transdução de Sinais/efeitos dos fármacos , Inibidores da Topoisomerase I/farmacologia , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA