Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 323(5): L515-L524, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36098461

RESUMO

Failure to regenerate injured alveoli functionally and promptly causes a high incidence of fatality in coronavirus disease 2019 (COVID-19). How elevated plasminogen activator inhibitor-1 (PAI-1) regulates the lineage of alveolar type 2 (AT2) cells for re-alveolarization has not been studied. This study aimed to examine the role of PAI-1-Wnt5a-ß catenin cascades in AT2 fate. Dramatic reduction in AT2 yield was observed in Serpine1Tg mice. Elevated PAI-1 level suppressed organoid number, development efficiency, and total surface area in vitro. Anti-PAI-1 neutralizing antibody restored organoid number, proliferation and differentiation of AT2 cells, and ß-catenin level in organoids. Both Wnt family member 5A (Wnt5a) and Wnt5a-derived N-butyloxycarbonyl hexapeptide (Box5) altered the lineage of AT2 cells. This study demonstrates that elevated PAI-1 regulates AT2 proliferation and differentiation via the Wnt5a/ß catenin cascades. PAI-1 could serve as autocrine signaling for lung injury repair.


Assuntos
COVID-19 , Inibidor 1 de Ativador de Plasminogênio , Proteína Wnt-5a , beta Catenina , Animais , Camundongos , Anticorpos Neutralizantes , beta Catenina/metabolismo , Regulação para Baixo , Via de Sinalização Wnt/fisiologia , Proteína Wnt-5a/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Alvéolos Pulmonares/citologia , Proliferação de Células
2.
Indian J Med Res ; 142(6): 747-58, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26831424

RESUMO

BACKGROUND & OBJECTIVES: There is a significant bone tissue loss in patients from diseases and traumatic injury. The current autograft transplantation gold standard treatment has drawbacks, namely donor site morbidity and limited supply. The field of tissue engineering has emerged with a goal to provide alternative sources for transplantations to bridge this gap between the need and lack of bone graft. The aim of this study was to prepare biocomposite scaffolds based on chitosan (CHT), polycaprolactone (PCL) and hydroxyapatite (HAP) by freeze drying method and to assess the role of scaffolds in spatial organization, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro, in order to achieve bone graft substitutes with improved physical-chemical and biological properties. METHODS: Pure chitosan (100CHT) and composites (40CHT/HAP, 30CHT/HAP/PCL and 25CHT/HAP/PCL scaffolds containing 40, 30, 25 parts per hundred resin (phr) filler, respectively) in acetic acid were freeze dried and the porous foams were studied for physicochemical and in vitro biological properties. RESULTS: Scanning electron microscope (SEM) images of the scaffolds showed porous microstructure (20-300 µm) with uniform pore distribution in all compositions. Materials were tested under compressive load in wet condition (using phosphate buffered saline at pH 7.4). The in vitro studies showed that all the scaffold compositions supported mesenchymal stem cell attachment, proliferation and differentiation as visible from SEM images, [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay, alkaline phosphatase (ALP) assay and quantitative reverse transcription (qRT)-PCR. INTERPRETATION & CONCLUSIONS: Scaffold composition 25CHT/HAP/PCL showed better biomechanical and osteoinductive properties as evident by mechanical test and alkaline phosphatase activity and osteoblast specific gene expression studies. This study suggests that this novel degradable 3D composite may have great potential to be used as scaffold in bone tissue engineering.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Alicerces Teciduais , Fosfatase Alcalina/metabolismo , Células Cultivadas , Quitosana , Durapatita , Humanos , Técnicas In Vitro , Células-Tronco Mesenquimais/enzimologia , Microscopia Eletrônica de Varredura , Poliésteres
3.
Front Immunol ; 14: 1342429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250062

RESUMO

Sarcoidosis is a chronic granulomatous disorder characterized by unknown etiology, undetermined mechanisms, and non-specific therapies except TNF blockade. To improve our understanding of the pathogenicity and to predict the outcomes of the disease, the identification of new biomarkers and molecular endotypes is sorely needed. In this study, we systematically evaluate the biomarkers identified through Omics and non-Omics approaches in sarcoidosis. Most of the currently documented biomarkers for sarcoidosis are mainly identified through conventional "one-for-all" non-Omics targeted studies. Although the application of machine learning algorithms to identify biomarkers and endotypes from unbiased comprehensive Omics studies is still in its infancy, a series of biomarkers, overwhelmingly for diagnosis to differentiate sarcoidosis from healthy controls have been reported. In view of the fact that current biomarker profiles in sarcoidosis are scarce, fragmented and mostly not validated, there is an urgent need to identify novel sarcoidosis biomarkers and molecular endotypes using more advanced Omics approaches to facilitate disease diagnosis and prognosis, resolve disease heterogeneity, and facilitate personalized medicine.


Assuntos
Doença Granulomatosa Crônica , Sarcoidose , Humanos , Biomarcadores , Algoritmos , Aprendizado de Máquina , Sarcoidose/diagnóstico , Sarcoidose/genética
4.
Stem Cells Transl Med ; 10(2): 303-319, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33049125

RESUMO

Among conventional fabrication techniques, freeze-drying process has widely been investigated for polymeric implants. However, the understanding of the stem cell progenitor-dependent cell functionality modulation and quantitative analysis of early osseointegration of highly porous scaffolds have not been explored. Here, we developed a novel, highly porous, multimaterial composite, chitosan/hydroxyapatite/polycaprolactone (CHT/HA/PCL). The in vitro studies have been performed using mesenchymal stem cells (MSCs) from three tissue sources: human bone marrow-derived MSCs (BM-MSCs), adipose-derived MSCs (AD-MSCs), and Wharton's jelly-derived MSCs (WJ-MSCs). Although cell attachment and metabolic activity [3-4,5-dimethylthiazol-2yl-(2,5 diphenyl-2H-tetrazoliumbromide) assay] were ore enhanced in WJ-MSC-laden CHT/HA/PCL composites, scanning electron microscopy, real-time gene expression (alkaline phosphatase [ALP], collagen type I [Col I], osteocalcin [OCN], and bone morphogenetic protein 4 [BMP-4]), and immunostaining (COL I, ß-CATENIN, OCN, and SCLEROSTIN [SOST]) demonstrated pronounced osteogenesis with terminal differentiation on BM-MSC-laden CHT/HA/PCL composites only. The enhanced cell functionality on CHT/HA/PCL composites was explained in terms of interplay among the surface properties and the optimal source of MSCs. In addition, osteogenesis in rat tibial model over 6 weeks confirmed a better ratio of bone volume to the total volume for BM-MSC-laden composites over scaffold-only and defect-only groups. The clinically conformant combination of 3D porous architecture with pore sizes varying in the range of 20 to 200 µm together with controlled in vitro degradation and early osseointegration establish the potential of CHT/HA/PCL composite as a potential cancellous bone analog.


Assuntos
Quitosana , Células-Tronco Mesenquimais , Osteogênese , Alicerces Teciduais , Animais , Diferenciação Celular , Durapatita , Porosidade , Ratos
6.
J Neurosurg ; 117(6): 1170-81, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23039144

RESUMO

OBJECT: Bone marrow-derived stem cells enhance the rate of regeneration of neuronal cells leading to clinical improvement in nerve injury, spinal cord injury, and brain infarction. Recent experiments in the local application of bone marrow-derived mononuclear cells (BM-MNCs) in models of sciatic nerve transection in rats have suggested their beneficial role in nerve regeneration, although the effects of variable doses of stem cells on peripheral nerve regeneration have never been specifically evaluated in the literature. In this paper, the authors evaluated the dose-dependent role of BM-MNCs in peripheral nerve regeneration in a model of sciatic nerve transection in rats. METHODS: The right sciatic nerve of 60 adult female Wistar rats (randomized into 2 test groups and 1 control group, 20 rats in each group) underwent transection under an operating microscope. The cut ends of the nerve were approximated using 2 epineural microsutures. The gap was filled with low-dose (5 million BM-MNCs/100 µl phosphate-buffered saline [PBS]) rat BM-MNCs in one group, high-dose (10 million BM-MNCs/100 µl PBS) rat BM-MNCs in another group, and only PBS in the control group, and the approximated nerve ends were sealed using fibrin glue. Histological assessment was performed after 30 days by using semiquantitative and morphometric analyses and was done to assess axonal regeneration, percentage of myelinated fibers, axonal diameter, fiber diameter, and myelin thickness at distal-most sites (10 mm from site of repair), intermediate distal sites (5 mm distal to the repair site), and site of repair. RESULTS: The recovery of nerve cell architecture after nerve anastomosis was far better in the high-dose BM-MNC group than in the low-dose BM-MNC and control groups, and it was most evident (p < 0.02 in the majority of the parameters [3 of 4]) at the distal-most site. Overall, the improvement in myelin thickness was most significant with incremental dosage of BM-MNCs, and was evident at the repair, intermediate distal, and distal-most sites (p = 0.001). CONCLUSIONS: This study emphasizes the role of BM-MNCs, which can be isolated easily from bone marrow aspirates, in peripheral nerve injury and highlights their dose-dependent facilitation of nerve regeneration.


Assuntos
Axônios , Transplante de Medula Óssea , Monócitos/transplante , Regeneração Nervosa , Nervo Isquiático/fisiopatologia , Nervo Isquiático/cirurgia , Animais , Axônios/patologia , Proliferação de Células , Feminino , Hibridização in Situ Fluorescente , Fibras Nervosas Mielinizadas , Nervos Periféricos/fisiopatologia , Nervos Periféricos/cirurgia , Distribuição Aleatória , Ratos , Ratos Wistar , Células de Schwann , Nervo Isquiático/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA