RESUMO
Objective. The use of cerebrospinal shunts is the standard of care for hydrocephalus. However, shunts are extremely vulnerable to failure and lack noninvasive methods to monitor their viability. We review current shunt technologies and attempts to improve their function. Methods. A PubMed search was performed to find literature on shunts and shunt function. Company brochures and websites were also used. Results. Fixed and variable pressure valves from four major companies are discussed. Also reviewed are siphon resistive devices, intracranial pressure sensors, and recent attempts on the development of cerebrospinal fluid sensors, including a micromechanical flow sensor we have recently developed. Conclusions. While variable pressure valves and siphon resistive devices have both had considerable success in dealing with variable intracranial pressure, a more sophisticated, continuous monitoring system is needed to ensure shunt viability and patient safety. An integrated flow sensor may provide the ability to track fluid flow and determine shunt functionality.
Assuntos
Hidrocefalia/fisiopatologia , Pressão Intracraniana/fisiologia , Derivações do Líquido Cefalorraquidiano , HumanosRESUMO
Multicellular cancer spheroids are an in vitro tissue model that mimics the three-dimensional microenvironment. As spheroids grow, they develop the gradients of oxygen, nutrients, and catabolites, affecting crucial tumor characteristics such as proliferation and treatment responses. The measurement of spheroid stiffness provides a quantitative measure to evaluate such structural changes over time. In this report, we measured the stiffness of size-matched day 5 and day 20 tumor spheroids using a custom-built microscale force sensor and conducted transmission electron microscopy (TEM) imaging to compare the internal structures. We found that older spheroids reduce interstitial spaces in the core region and became significantly stiffer. The measured elastic moduli were 260±100 and 680±150 Pa, for day 5 and day 20 spheroids, respectively. The day 20 spheroids showed an optically dark region in the center. Analyzing the high-resolution TEM images of spheroid middle sections across the diameter showed that the cells in the inner region of the day 20 spheroids are significantly larger and more closely packed than those in the outer regions. On the other hand, the day 5 spheroids did not show a significant difference between the inner and outer regions. The observed reduction of the interstitial space may be one factor that contributes to stiffer older spheroids.
Assuntos
Neoplasias , Esferoides Celulares , Humanos , Microscopia Eletrônica , Microambiente TumoralRESUMO
By combining novel micro-scale manipulation cantilevers with commercially available, widely used 3D light microscopy, we were able to develop a new method of 3D elastography specialized for the analysis of 3D microtumors. Existing mechanical characterization methods are available for the study of single cells, using forces in the range of sub pN to a few hundred nN, or of larger tissues, with forces greater than 1 mN. Our method supports the mechanical analysis of micro- to meso-scale 3D tissues, such as multicellular spheroids (200-300 µm diameter), by applying forces in the range of sub-hundred nN to sub-mN, while also maintaining a spatial resolution of elasticity measurement as small as 20-30 µm. We use a differential interference contrast (DIC)/confocal microscope to obtain a 4D (x, y, z, and indentation steps) image sequence, which is then analyzed using our custom 3D pattern-tracking MATLAB program. With this method, we have been able to show structural and spatial heterogeneity among single cells and surrounding regions in tumor spheroids, and between different cell types in tumor-fibroblast co-cultured spheroids. Our method has the potential to both bridge the gap between in vitro monolayer culture systems and in vivo animal studies and add a mechanical component to existing biological assays.
Assuntos
Neoplasias , Esferoides Celulares , Animais , Técnicas de Cocultura , FibroblastosRESUMO
Although bone tissue allografts and autografts aremoften used as a regenerative tissue during the bone healing, their availability, donor site morbidity, and immune response to grafted tissue are limiting factors their more common usage. Tissue engineered implants, such as acellular or cellular polymeric structures, can be an alternative solution. A variety of scaffold fabrication techniques including electrospinning, particulate leaching, particle sintering, and more recently 3D printing have been used to create scaffolds with interconnected pores and mechanical properties for tissue regeneration. Simply combining particle sintering and molecular self-assembly to create porous microstructures with imbued nanofibers to produce micronanostructures for tissue regeneration applications. Natural polymers like polysaccharides, proteins and peptides of plant or animal origin have gained significant attention due to their assured biocompatibility in tissue regeneration. However, majority of these polymers are water soluble and structures derived from them are in the form of hydrogels and require additional stabilization via cross-linking. For bone healing applications scaffolds are required to be strong, and support attachment, proliferation and differentiation of osteoprogenitors into osteoblasts. Our ongoing work utilizes plant polysaccharide cellulose derivatives and collagen to create mechanically stable and bioactive micronanostructured scaffold for bone tissue engineering. Scaffold microstructure is essentially solvent sintered cellulose acetate (CA) microspheres in the form of a negative template for trabecular bone with defined pore and mechanical properties. Collagen nanostructures are imbued into the 3D environment of CA scaffolds using collagen molecular self-assembly principles. The resultant CA-collagen micronanostructures provide the benefits of combined polymers and serve as an alternative material platform to many FDA approved polyesters. Our ongoing studies and published work confirm improved osteoprogenitor adhesion, proliferation, migration, differentiation, extracellular matrix (ECM) secretion in promoting bone healing. In this chapter we will provide a detailed protocol on the creation of micronanostructured CA-collagen scaffolds and their characterization for bone tissue engineering using human mesenchymal stem cells.
Assuntos
Nanofibras , Engenharia Tecidual , Animais , Regeneração Óssea , Osso e Ossos , Nanofibras/química , Polímeros/química , Alicerces Teciduais/químicaRESUMO
Engineered soft tissue products-both tendon and ligament-have gained tremendous interest in regenerative medicine as alternatives to autograft and allograft treatments due to their potential to overcome limitations such as pain and donor site morbidity. Tendon engineered grafts have focused on the replication of native tendon tissue composition and architecture in the form of scaffolds using synthetic or natural biomaterials seeded with cells and factors. However, these approaches suffer due to static culture environments that fail to mimic the dynamic tissue environment and mechanical forces required to promote tenogenic differentiation of cultured cells. Mechanical stimulation is sensed by cellular mechanosensors such as integrins, focal adhesion kinase, and other transmembrane receptors which promote tenogenic gene expression and synthesis of tendon extracellular matrix components such as Type I collagen. Thus, it is imperative to apply biological and biomechanical aspects to engineer tendon. This review highlights the origin of tendon tissue, its ability to sense forces from its microenvironment, and the biological machinery that helps in mechanosensation. Additionally, this review focuses on use of bioreactors that aid in understanding cell-microenvironment interactions and enable the design of mechanically competent tendon tissue. We categorize these bioreactors based on functional features, sample size/type, and loading regimes and discuss their application in tendon research. The objective of this article is to provide a perspective on biomechanical considerations in the development of functional tendon tissue.
Assuntos
Materiais Biocompatíveis/química , Tendões/fisiopatologia , Engenharia Tecidual/métodos , Animais , Fenômenos Biomecânicos , Biomimética , Biofísica/métodos , Reatores Biológicos , Caderinas/metabolismo , Diferenciação Celular , Células Cultivadas , Colágeno/química , Colágeno Tipo I/química , Elasticidade , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Integrinas/metabolismo , Ligamentos/fisiopatologia , Células-Tronco/citologia , Estresse Mecânico , Tendões/metabolismo , Tendões/patologia , Tenócitos/citologia , Alicerces Teciduais , ViscosidadeRESUMO
Advent of additive manufacturing in biomedical field has nurtured fabrication of complex, customizable and reproducible orthopaedic implants. Layer-by-layer deposition of biodegradable polymer employed in development of porous orthopaedic screws promises gradual dissolution and complete metabolic resorption thereby overcoming the limitations of conventional metallic screws. In the present study, screws with different pore sizes (916 × 918 µm to 254 × 146 µm) were 3D printed at 200 µm layer height by varying printing parameters such as print speed, fill density and travel speed to augment the bone ingrowth. Micro-CT analysis and scanning electron micrographs of screws with 45% fill density confirmed porous interconnections (40.1%) and optimal pore size (259 × 207 × 200 µm) without compromising the mechanical strength (24.58 ± 1.36 MPa). Due to the open pore structure, the 3D printed screws showed increased weight gain due to the deposition of calcium when incubated in simulated body fluid. Osteoblast-like cells attached on screw and infiltrated into the pores over 14 days of in vitro culture. Further, the screws also supported greater human mesenchymal stem cell adhesion, proliferation and mineralized matrix synthesis over a period of 21 days in vitro culture as compared to non-porous screws. These porous screws showed significantly increased vascularization in a rat subcutaneous implantation as compared to control screws. Porous screws produced by additive manufacturing may promote better osteointegration due to enhanced mineralization and vascularization.
RESUMO
We report on the design and the modeling of a three-dimensional (3D) printed flexure-based actuation mechanism for robotic microtweezers, the main body of which is a single piece of nylon. Our design aims to fill a void in sample manipulation between two classes of widely used instruments: nano-scale and macro-scale robotic manipulators. The key component is a uniquely designed cam flexure system, which linearly translates the bending of a piezoelectric bimorph actuator into angular displacement. The 3D printing made it possible to realize the fabrication of the cam with a specifically calculated curve, which would otherwise be costly using conventional milling techniques. We first characterized 3D printed nylon by studying sets of simple cantilevers, which provided fundamental characteristics that could be used for further designs. The finite element method analysis based on the obtained material data matched well with the experimental data. The tweezers showed angular displacement from 0° to 10° linearly to the deflection of the piezo actuator (0-1.74 mm) with the linearity error of 0.1°. Resonant frequency of the system with/without working tweezer tips was discovered as 101 Hz and 127 Hz, respectively. Our design provides simple and low-cost construction of a versatile manipulator system for samples in the micro/meso-scale (0.1-1 mm).
RESUMO
We have demonstrated a new method of 3D elastography based on 3D light microscopy and micro-scale manipulation. We used custom-built micromanipulators to apply a mechanical force onto multicellular tumor spheroids (200-300 µm in size) and recorded the induced compression with a differential interference contrast (DIC)/confocal microscope to obtain a 4D (x, y, z, and indentation steps) image sequence. Deformation analysis made through 3D pattern tracking without using fluorescence revealed 3D structural and spatial heterogeneity in tumor spheroids. We observed a 20-30 µm-sized spot of locally-induced large deformation within a tumor spheroid. We also found solid fibroblast cores formed in a tumor-fibroblast co-culture spheroid to be stiffer than surrounding cancer cells, which would not have been discovered using only conventional fluorescence. Our new method of 3D elastography may be used to better understand structural composition in multicellular spheroids through analysis of mechanical heterogeneity.
RESUMO
The current status of skin tissue equivalents that have emerged as relevant tools in commercial and therapeutic product development applications is reviewed. Due to the rise of animal welfare concerns, numerous companies have designed skin model alternatives to assess the efficacy of pharmaceutical, skincare, and cosmetic products in an in vitro setting, decreasing the dependency on such methods. Skin models have also made an impact in determining the root causes of skin diseases. When designing a skin model, there are various chemical and physical considerations that need to be considered to produce a biomimetic design. This includes designing a structure that mimics the structural characteristics and mechanical strength needed for tribological property measurement and toxicological testing. Recently, various commercial products have made significant progress towards achieving a native skin alternative. Further research involve the development of a functional bilayered model that mimics the constituent properties of the native epidermis and dermis. In this article, the skin models are divided into three categories: in vitro epidermal skin equivalents, in vitro full-thickness skin equivalents, and clinical skin equivalents. A description of skin model characteristics, testing methods, applications, and potential improvements is presented.
Assuntos
Pele Artificial , Engenharia Tecidual , Humanos , Modelos Biológicos , Pele/citologia , Dermatopatias/fisiopatologia , Dermatopatias/cirurgia , Fenômenos Fisiológicos da PeleRESUMO
Complex craniofacial surgeries of damaged tissues have several limitations, which present complications and challenges when trying to replicate facial function and structure. Traditional treatment techniques have shown suitable nerve function regeneration with various drawbacks. As technology continues to advance, new methods have been explored in order to regenerate damaged nerves in an effort to more efficiently and effectively regain original function and structure. This article will summarize recent bioengineering strategies involving biodegradable composite scaffolds, bioactive factors, and external stimuli alone or in combination to support peripheral nerve regeneration. Particular emphasis is made on the contributions of growth factors and electrical stimulation on the regenerative process.
RESUMO
We propose a novel nondestructive, label-free, mechanical characterization method for composite biomimetic materials. The method combines microscale-force measurement, bright-field microscopy based deformation analysis, and finite-element methods (FEM) to study the heterogeneity in bioengineered composite materials. The method was used to study silk fibroin protein based, donut-shaped scaffolds consisting of a shell (diameter 5 mm) and a core (diameter 2 mm) with a stiff-core or a soft-core configuration. The samples were based on our previously reported bioengineered brain tissue model. Step-wise images of sample deformation were recorded as the automated mechanical stage compressed the sample. The force-compression curves were also recorded with a load cell. A MATLAB program was used to compare and match optically measured strain distribution with that found from the FEM simulations. Iterative processes are used to determine the values that best represent the elastic moduli of the shell and the core regions. The calculated moduli found from the composite models were not significantly different from the values measured separately for each material, demonstrating the efficacy of this new approach. In addition, the method successfully measured multiple distinct regions embedded in a polydimethylsiloxane block. These results demonstrated the feasibility of our method in the microheterogeneity characterization of biomimetic composite structures.
RESUMO
We describe a novel mechanical characterization method that has directly measured the stiffness of cancer spheroids for the first time to our knowledge. Stiffness is known to be a key parameter that characterizes cancerous and normal cells. Atomic force microscopy or optical tweezers have been typically used for characterization of single cells with the measurable forces ranging from sub pN to a few hundred nN, which are not suitable for measurement of larger 3D cellular structures such as spheroids, whose mechanical characteristics have not been fully studied. Here, we developed microtweezers that measure forces from sub hundred nN to mN. The wide force range was achieved by the use of replaceable cantilevers fabricated from SU8, and brass. The chopstick-like motion of the two cantilevers facilitates easy handling of samples and microscopic observation for mechanical characterization. The cantilever bending was optically tracked to find the applied force and sample stiffness. The efficacy of the method was demonstrated through stiffness measurement of agarose pillars with known concentrations. Following the initial system evaluation with agarose, two cancerous (T47D and BT474) and one normal epithelial (MCF 10A) breast cell lines were used to conduct multi-cellular spheroid measurements to find Young's moduli of 230, 420 and 1250 Pa for BT474, T47D, and MCF 10A, respectively. The results showed that BT474 and T47D spheroids are six and three times softer than epithelial MCF10A spheroids, respectively. Our method successfully characterized samples with wide range of Young's modulus including agarose (25-100 kPa), spheroids of cancerous and non-malignant cells (190-200 µm, 230-1250 Pa) and collagenase-treated spheroids (215 µm, 130 Pa).
Assuntos
Pinças Ópticas , Esferoides Celulares/fisiologia , Algoritmos , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Sobrevivência Celular , Módulo de Elasticidade , Humanos , Modelos Biológicos , Reconhecimento Automatizado de Padrão , SefaroseRESUMO
Electrospinning of water-soluble polymers and retaining their mechanical strength and bioactivity remain challenging. Volatile organic solvent soluble polymers and their derivatives are preferred for fabricating electrospun nanofibers. We report the synthesis and characterization of 2-nitrobenzyl-gelatin (N-Gelatin)--a novel gelatin Schiff base derivative--and the resulting electrospun nanofiber matrices. The 2-nitrobenzyl group is a photoactivatable-caged compound and can be cleaved from the gelatin nanofiber matrices following UV exposure. Such hydrophobic modification allowed the fabrication of gelatin and blend nanofibers with poly(caprolactone) (PCL) having significantly improved tensile properties. Neat gelatin and their PCL blend nanofiber matrices showed a modulus of 9.08 ± 1.5 MPa and 27.61 ± 4.3 MPa, respectively while the modified gelatin and their blends showed 15.63 ± 2.8 MPa and 24.47 ± 8.7 MPa, respectively. The characteristic infrared spectroscopy band for gelatin Schiff base derivative at 1560 cm(-1) disappeared following exposure to UV light indicating the regeneration of free NH2 group and gelatin. These nanofiber matrices supported cell attachment and proliferation with a well spread morphology as evidenced through cell proliferation assay and microscopic techniques. Modified gelatin fiber matrices showed a 73% enhanced cell attachment and proliferation rate compared to pure gelatin. This polymer modification methodology may offer a promising way to fabricate electrospun nanofiber matrices using a variety of proteins and peptides without loss of bioactivity and mechanical strength.
Assuntos
Gelatina/química , Gelatina/farmacologia , Nanofibras/química , Engenharia Tecidual/métodos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Humanos , Nanofibras/toxicidade , Pele/citologiaRESUMO
The major challenge for bone tissue engineering lies in the fabrication of scaffolds that can mimic the extracellular matrix and promote osteogenesis. Electrospun fibers are being widely researched for this application due to high porosity, interconnectivity, and mechanical strength of the fibrous scaffolds. Electrospun poly methyl methacrylate (PMMA, 2.416 ± 0.100 µm) fibers were fabricated and etched using a 60% propylene glycol methyl ether acetate (PGMEA)/limonene (vol/vol) solution to obtain fiber diameters ranging from 2.5 to 0.5 µm in a time-dependent manner. The morphology of the fibrous scaffolds was evaluated using scanning electron microscopy and cellular compatibility with etchant-treated scaffold was assessed using immunoflurescence. Mitogen-activated protein kinases (MAPK) activation in response to different fiber diameter was evaluated with western blot as well as quantitative in-cell western. We report that electrospun micro-fibers can be etched to 0.552 ± 0.047 µm diameter without producing beads. Osteoblasts adhered to the fibers and a change in fiber diameter played a major role in modulating the activation of extracellular signal-regulated kinase (ERK) and p38 kinases with 0.882 ± 0.091 µm diameter fibers producing an inverse effect on ERK and p38 phosphorylation. These results indicate that nanofibers produced by wet etching can be effectively utilized to produce diameters that can differentially modulate MAPK activation patterns.