Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Naturwissenschaften ; 106(7-8): 45, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270619

RESUMO

Protandry, the earlier arrival of males at the breeding grounds relative to females, is common in migratory birds. However, due to difficulties in following individual birds on migration, we still lack knowledge about the spatiotemporal origin of protandry during the annual cycle, impeding our understanding of the proximate drivers of this phenomenon. Here, we use full annual cycle tracking data of red-backed shrikes Lanius collurio to investigate the occurrence of sex-related differences in migratory pattern, which could be viewed as precursors (proximate causes) to protandry. We find protandry with males arriving an estimated 8.3 days (SE = 4.1) earlier at the breeding area than females. Furthermore, we find that, averaged across all departure and arrival events throughout the annual cycle, males migrate an estimated 5.3 days earlier than females during spring compared to 0.01 days in autumn. Event-wise estimates suggest that a divergence between male and female migratory schedules is initiated at departure from the main non-breeding area, thousands of kilometres from-, and several months prior to arrival at the breeding area. Duration of migration, flight speed during migration and spatial locations of stationary sites were similar between sexes. Our results reveal that protandry might arise from sex-differential migratory schedules emerging at the departure from the main non-breeding area in southern Africa and retained throughout spring migration, supporting the view that sex-differential selection pressure operates during spring migration rather than autumn migration.


Assuntos
Migração Animal/fisiologia , Passeriformes/fisiologia , Processos de Determinação Sexual/fisiologia , Animais , Feminino , Masculino , Fatores Sexuais
2.
Carcinogenesis ; 39(2): 109-117, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29069374

RESUMO

Cancer cells consistently exhibit decreased stiffness; however, the onset and progression of this change have not been characterized. To study the development of cell stiffness changes, we evaluated the shear stiffness of populations of cells during transformation to a carcinogenic state. Bronchial epithelial cells were exposed to sodium arsenite to initiate early stages of transformation. Exposed cells were cultured in soft agar to further transformation and select for clonal populations exhibiting anchorage-independent growth. Shear stiffness of various cell populations in G1 was assessed using a novel non-invasive assay that applies shear stress with fluid flow and evaluates nanoscale deformation using quantitative phase imaging (QPI). Arsenic-treated cells exhibited reduced stiffness relative to control cells, while arsenic clonal lines, selected by growth in soft agar, were found to have reduced stiffness relative to control clonal lines, which were cultured in soft agar but did not receive arsenic treatment. The relative standard deviation (RSD) of the stiffness of Arsenic clones was reduced compared with control clones, as well as to the arsenic-exposed cell population. Cell stiffness at the population level exhibits potential to be a novel and sensitive framework for identifying the development of cancerous cells.


Assuntos
Transformação Celular Neoplásica/patologia , Células Epiteliais/patologia , Resistência ao Cisalhamento/efeitos dos fármacos , Arsenitos/toxicidade , Carcinógenos/toxicidade , Linhagem Celular , Transformação Celular Neoplásica/induzido quimicamente , Células Epiteliais/efeitos dos fármacos , Fase G1 , Humanos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia , Compostos de Sódio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA