Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Diabetologia ; 63(7): 1324-1332, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32291466

RESUMO

AIMS/HYPOTHESIS: We aimed to investigate whether the impact of obesity and unfavourable lifestyle on type 2 diabetes risk is accentuated by genetic predisposition. METHODS: We examined the joint association of genetic predisposition, obesity and unfavourable lifestyle with incident type 2 diabetes using a case-cohort study nested within the Diet, Cancer and Health cohort in Denmark. The study sample included 4729 individuals who developed type 2 diabetes during a median 14.7 years of follow-up, and a randomly selected cohort sample of 5402 individuals. Genetic predisposition was quantified using a genetic risk score (GRS) comprising 193 known type 2 diabetes-associated loci (excluding known BMI loci) and stratified into low (quintile 1), intermediate and high (quintile 5) genetic risk groups. Lifestyle was assessed by a lifestyle score composed of smoking, alcohol consumption, physical activity and diet. We used Prentice-weighted Cox proportional-hazards models to test the associations of the GRS, obesity and lifestyle score with incident type 2 diabetes, as well as the interactions of the GRS with obesity and unfavourable lifestyle in relation to incident type 2 diabetes. RESULTS: Obesity (BMI ≥ 30 kg/m2) and unfavourable lifestyle were associated with higher risk for incident type 2 diabetes regardless of genetic predisposition (p > 0.05 for GRS-obesity and GRS-lifestyle interaction). The effect of obesity on type 2 diabetes risk (HR 5.81 [95% CI 5.16, 6.55]) was high, whereas the effects of high genetic risk (HR 2.00 [95% CI 1.76, 2.27]) and unfavourable lifestyle (HR 1.18 [95% CI 1.06, 1.30]) were relatively modest. Even among individuals with low GRS and favourable lifestyle, obesity was associated with a >8-fold risk of type 2 diabetes compared with normal-weight individuals in the same GRS and lifestyle stratum. CONCLUSIONS/INTERPRETATION: Having normal body weight is crucial in the prevention of type 2 diabetes, regardless of genetic predisposition.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Estilo de Vida , Obesidade/epidemiologia , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/fisiopatologia , Peso Corporal/genética , Peso Corporal/fisiologia , Estudos de Coortes , Diabetes Mellitus Tipo 2/genética , Exercício Físico , Predisposição Genética para Doença/genética , Humanos , Obesidade/genética , Fatores de Risco , Fumar/genética , Fumar/fisiopatologia
2.
Biol Proced Online ; 22: 6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190011

RESUMO

BACKGROUND: Serine hydrolases (SHs) are a functionally diverse family of enzymes playing pivotal roles in health and disease and have emerged as important therapeutic targets in many clinical conditions. Activity-based protein profiling (ABPP) using fluorophosphonate (FP) probes has been a powerful chemoproteomic approach in studies unveiling roles of SHs in various biological systems. ABPP utilizes cell/tissue proteomes and features the FP-warhead, linked to a fluorescent reporter for in-gel fluorescence imaging or a biotin tag for streptavidin enrichment and LC-MS/MS-based target identification. Existing ABPP approaches characterize global SH activity based on mobility in gel or MS-based target identification and cannot reveal the identity of the cell-type responsible for an individual SH activity originating from complex proteomes. RESULTS: Here, by using an activity probe with broad reactivity towards the SH family, we advance the ABPP methodology to glioma brain cryosections, enabling for the first time high-resolution confocal fluorescence imaging of global SH activity in the tumor microenvironment. Tumor-associated cell types were identified by extensive immunohistochemistry on activity probe-labeled sections. Tissue-ABPP indicated heightened SH activity in glioma vs. normal brain and unveiled activity hotspots originating from tumor-associated neutrophils (TANs), rather than tumor-associated macrophages (TAMs). Thorough optimization and validation was provided by parallel gel-based ABPP combined with LC-MS/MS-based target verification. CONCLUSIONS: Our study advances the ABPP methodology to tissue sections, enabling high-resolution confocal fluorescence imaging of global SH activity in anatomically preserved complex native cellular environment. To achieve global portrait of SH activity throughout the section, a probe with broad reactivity towards the SH family members was employed. As ABPP requires no a priori knowledge of the identity of the target, we envisage no imaginable reason why the presently described approach would not work for sections regardless of species and tissue source.

3.
Curr Diab Rep ; 19(11): 109, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31686257

RESUMO

PURPOSE OF REVIEW: We review recent evidence of the relationship between dietary fat intake and risk of type 2 diabetes (T2D), the role of epigenetic alterations as a mediator of this relationship, and the impact of gene-dietary fat interactions in the development of the disease. Based on the observations made, we will discuss whether there is evidence to support genetic personalization of fat intake recommendations in T2D prevention. RECENT FINDINGS: Strong evidence suggests that polyunsaturated fatty acids (PUFA) have a protective effect on T2D risk, whereas the roles of saturated and monounsaturated fatty acids (SFA and MUFA) remain unclear. Diets enriched with PUFA vs SFA lead to distinct epigenetic alterations that may mediate their effects on T2D risk by changing gene function. However, it is not currently known which of the epigenetic alterations, if any, are causal for T2D. The current literature shows no replicated evidence of genetic variants modifying the effect of dietary fat intake on T2D risk. There is consistent evidence of a protective role of PUFA in T2D prevention. No evidence supports genetic personalization of dietary recommendations in T2D prevention.


Assuntos
Diabetes Mellitus Tipo 2 , Gorduras na Dieta , Predisposição Genética para Doença , Diabetes Mellitus Tipo 2/genética , Ácidos Graxos , Ácidos Graxos Monoinsaturados , Ácidos Graxos Insaturados , Humanos
4.
J Pharmacol Exp Ther ; 359(1): 62-72, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27451409

RESUMO

Monoacylglycerol lipase (MAGL) is a serine hydrolase that acts as a principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). In addition to terminating the signaling function of 2-AG, MAGL liberates arachidonic acid to be used as a primary source for neuroinflammatory prostaglandin synthesis in the brain. MAGL activity also contributes to cancer pathogenicity by producing precursors for tumor-promoting bioactive lipids. Pharmacological inhibitors of MAGL provide valuable tools for characterization of MAGL and 2-AG signaling pathways. They also hold great therapeutic potential to treat several pathophysiological conditions, such as pain, neurodegenerative disorders, and cancer. We have previously reported piperidine triazole urea, {4-[bis-(benzo[d][1,3]dioxol-5-yl)methyl]-piperidin-1-yl}(1H-1,2,4-triazol-1-yl)methanone (JJKK-048), to be an ultrapotent and highly selective inhibitor of MAGL in vitro. Here, we characterize in vivo effects of JJKK-048. Acute in vivo administration of JJKK-048 induced a massive increase in mouse brain 2-AG levels without affecting brain anandamide levels. JJKK-048 appeared to be extremely potent in vivo. Activity-based protein profiling revealed that JJKK-048 maintains good selectivity toward MAGL over other serine hydrolases. Our results are also the first to show that JJKK-048 promoted significant analgesia in a writhing test with a low dose that did not cause cannabimimetic side effects. At a high dose, JJKK-048 induced analgesia both in the writhing test and in the tail-immersion test, as well as hypomotility and hyperthermia, but not catalepsy.


Assuntos
Benzodioxóis/farmacologia , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/farmacologia , Animais , Ácidos Araquidônicos/metabolismo , Comportamento Animal/efeitos dos fármacos , Benzodioxóis/efeitos adversos , Benzodioxóis/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Endocanabinoides/metabolismo , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacocinética , Glicerídeos/metabolismo , Hipotermia/induzido quimicamente , Masculino , Camundongos , Nociceptividade/efeitos dos fármacos , Piperidinas/efeitos adversos , Piperidinas/farmacocinética , Pirazóis/farmacologia , Rimonabanto
5.
Nat Commun ; 10(1): 376, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670697

RESUMO

Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.


Assuntos
Exercício Físico , Loci Gênicos/genética , Lipídeos/sangue , Lipídeos/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático/genética , População Negra/genética , Brasil , Proteínas de Ligação ao Cálcio/genética , Colesterol/sangue , HDL-Colesterol/sangue , HDL-Colesterol/genética , LDL-Colesterol/sangue , LDL-Colesterol/genética , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Hispânico ou Latino/genética , Humanos , Proteínas com Homeodomínio LIM/genética , Metabolismo dos Lipídeos/genética , Masculino , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Triglicerídeos/sangue , Triglicerídeos/genética , População Branca/genética , Adulto Jovem
6.
Am J Reprod Immunol ; 77(3)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28044379

RESUMO

PROBLEM: Birth-related factors and neonatal treatments could affect the maturation of immune system and thus have lasting effects on immune responses. We investigated the effect of obstetric factors other than being born by cesarean section on immune responses later in life. METHOD OF STUDY: Regulatory, inflammatory, TH1 and TH2 cytokines, and a chemokine were analyzed in unstimulated and Toll-like receptors (TLRs) 2-, 3-, and 4-stimulated PBMCs of teenagers born by cesarean delivery (CD; N=79). Data on obstetric factors were collected from patient data archives. RESULTS: Advanced cervical dilatation at the time of CD associated with higher unstimulated production of cytokines compared to adolescents who were delivered before the onset of labor. Neonatal intensive care treatment associated with lower unstimulated production of cytokines. Similar associations were found following TLR stimulations. CONCLUSION: The lack of natural processes of delivery and neonatal intensive care treatment might lead to long-lasting impairment of immune responses.


Assuntos
Cesárea , Sistema Imunitário , Terapia Intensiva Neonatal , Leucócitos Mononucleares/imunologia , Células Th1/imunologia , Células Th2/imunologia , Útero/metabolismo , Adolescente , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Masculino , Gravidez , Receptores Toll-Like/metabolismo
7.
Eur J Pharm Sci ; 93: 253-63, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27544863

RESUMO

ABHD11 (α/ß-hydrolase domain containing 11) is a non-annotated enzyme belonging to the family of metabolic serine hydrolases (mSHs). Its natural substrates and products are unknown. Using competitive activity-based protein profiling (ABPP) to identify novel inhibitors of human (h)ABHD11, three compounds from our chemical library exhibited low nanomolar potency towards hABHD11. Competitive ABPP of various proteomes revealed fatty acid amide hydrolase (FAAH) as the sole off-target among the mSHs. Our fluorescent activity assays designed for natural lipase substrates revealed no activity of hABHD11 towards mono- or diacylglycerols. A broader profiling using para-nitrophenyl (pNP)-linked substrates indicated no amidase/protease, phosphatase, sulfatase, phospholipase C or phosphodiesterase activity. Instead, hABHD11 readily utilized para-nitrophenyl butyrate (pNPC4), indicating lipase/esterase-type activity that could be exploited in inhibitor discovery. Additionally, a homology model was created based on the crystal structure of bacterial esterase YbfF. In contrast to YbfF, which reportedly hydrolyze long-chain acyl-CoA, hABHD11 did not utilize oleoyl-CoA or arachidonoyl-CoA. In conclusion, the present study reports the discovery of potent hABHD11 inhibitors with good selectivity among mSHs. We developed substrate-based activity assays for hABHD11 that could be further exploited in inhibitor discovery and created the first homology-based hABHD11 model, offering initial insights into the active site of this poorly characterized enzyme.


Assuntos
Serina Proteases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Animais , Arilformamidase/genética , Encéfalo/metabolismo , Linhagem Celular Tumoral , Descoberta de Drogas , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Modelos Moleculares , Proteômica , Serina Proteases/química , Serina Proteases/genética , Tioléster Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA