Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
FASEB J ; 37(3): e22813, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36809652

RESUMO

Apolipoprotein(a) [apo(a)] is a highly polymorphic O-glycoprotein circulating in human plasma as lipoprotein(a) [Lp(a)]. The O-glycan structures of apo(a) subunit of Lp(a) serve as strong ligands of galectin-1, an O-glycan binding pro-angiogenic lectin abundantly expressed in placental vascular tissues. But the pathophysiological significance of apo(a)-galectin-1 binding is not yet been revealed. Carbohydrate-dependent binding of galectin-1 to another O-glycoprotein, neuropilin-1 (NRP-1) on endothelial cells activates vascular endothelial growth factor receptor 2 (VEGFR2) and mitogen-activated protein kinase (MAPK) signaling. Using apo(a), isolated from human plasma, we demonstrated the potential of the O-glycan structures of apo(a) in Lp(a) to inhibit angiogenic properties such as proliferation, migration, and tube-formation in human umbilical vein endothelial cells (HUVECs) as well as neovascularization in chick chorioallantoic membrane. Further, in vitro protein-protein interaction studies have confirmed apo(a) as a superior ligand to NRP-1 for galectin-1 binding. We also demonstrated that the protein levels of galectin-1, NRP-1, VEGFR2, and downstream proteins in MAPK signaling were reduced in HUVECs in the presence of apo(a) with intact O-glycan structures compared to that of de-O-glycosylated apo(a). In conclusion, our study shows that apo(a)-linked O-glycans prevent the binding of galectin-1 to NRP-1 leading to the inhibition of galectin-1/neuropilin-1/VEGFR2/MAPK-mediated angiogenic signaling pathway in endothelial cells. As higher plasma Lp(a) level in women is an independent risk factor for pre-eclamsia, a pregnancy-associated vascular complication, we propose that apo(a) O-glycans-mediated inhibition of the pro-angiogenic activity of galectin-1 may be one of the underlying molecular mechanism of pathogenesis of Lp(a) in pre-eclampsia.


Assuntos
Galectina 1 , Lipoproteína(a) , Feminino , Humanos , Apoproteína(a)/metabolismo , Galectina 1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ligantes , Lipoproteína(a)/metabolismo , Neuropilina-1/metabolismo , Polissacarídeos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
J Cell Sci ; 134(1)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33323505

RESUMO

Global and endothelial loss of PTP-PEST (also known as PTPN12) is associated with impaired cardiovascular development and embryonic lethality. Although hypoxia is implicated in vascular remodelling and angiogenesis, its effect on PTP-PEST remains unexplored. Here we report that hypoxia (1% oxygen) increases protein levels and catalytic activity of PTP-PEST in primary endothelial cells. Immunoprecipitation followed by mass spectrometry revealed that α subunits of AMPK (α1 and α2, encoded by PRKAA1 and PRKAA2, respectively) interact with PTP-PEST under normoxia but not in hypoxia. Co-immunoprecipitation experiments confirmed this observation and determined that AMPK α subunits interact with the catalytic domain of PTP-PEST. Knockdown of PTP-PEST abrogated hypoxia-mediated tyrosine dephosphorylation and activation of AMPK (Thr172 phosphorylation). Absence of PTP-PEST also blocked hypoxia-induced autophagy (LC3 degradation and puncta formation), which was rescued by the AMPK activator metformin (500 µM). Because endothelial autophagy is a prerequisite for angiogenesis, knockdown of PTP-PEST also attenuated endothelial cell migration and capillary tube formation, with autophagy inducer rapamycin (200 nM) rescuing angiogenesis. In conclusion, this work identifies for the first time that PTP-PEST is a regulator of hypoxia-induced AMPK activation and endothelial autophagy to promote angiogenesis.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Tirosina Fosfatase não Receptora Tipo 12 , Proteínas Quinases Ativadas por AMP/genética , Autofagia , Células Endoteliais/metabolismo , Humanos , Hipóxia , Fosforilação , Proteínas Tirosina Fosfatases
3.
J Biol Chem ; 296: 100614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839154

RESUMO

Epigenetic modifications have emerged as critical regulators of virulence genes and stage-specific gene expression in Plasmodium falciparum. However, the specific roles of histone core epigenetic modifications in regulating the stage-specific gene expression are not well understood. In this study, we report an unconventional trimethylation at lysine 64 on histone 3 (H3K64me3) and characterize its functional relevance in P. falciparum. We show that PfSET4 and PfSET5 proteins of P. falciparum methylate H3K64 and that they prefer the nucleosome as a substrate over free histone 3 proteins. Structural analysis of PfSET5 revealed that it interacts with the nucleosome as a dimer. The H3K64me3 mark is dynamic, being enriched in the ring and trophozoite stages and drastically reduced in the schizont stages. Stage-specific global chromatin immunoprecipitation -sequencing analysis of the H3K64me3 mark revealed the selective enrichment of this methyl mark on the genes of exported family proteins in the ring and trophozoite stages and a significant reduction of the same in the schizont stages. Collectively, our data identify a novel epigenetic mark that is associated with the subset of genes encoding for exported proteins, which may regulate their expression in different stages of P. falciparum.


Assuntos
Eritrócitos/parasitologia , Código das Histonas , Histonas/química , Lisina/química , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Metilação de DNA , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Malária Falciparum/genética , Malária Falciparum/metabolismo , Nucleossomos/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética
4.
Metabolomics ; 17(5): 47, 2021 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-33966131

RESUMO

INTRODUCTION: Hyperhomocysteinemia (HHCys) is an independent risk factor for various diseases such as cardiovascular diseases, Alzheimer's, and cancers. Folate deficiency is one of the significant reasons for HHCys. However, it is not known whether folate deficiency with HHCys is associated with any serum metabolites. OBJECTIVES: Our objective was to identify the metabolic alterations in people having folate deficiency with HHCys and check whether a short-term folic acid therapy could reverse those metabolic changes. METHODS: The study enrolled 34 participants aged between 18 and 40 years having folate deficiency (< 4.6 ng/mL) with HHCys (> 15 µmol/L) and 21 normal healthy individuals. A short-term intervention of oral folic acid (5 mg/day) was done in the HHCys group for 30 days. Untargeted metabolomics analysis of serum was performed in all study subjects before and after the folic acid treatment. Different univariate methods and the multivariable-adjusted linear regression models were employed to determine an association between homocysteine level and metabolite profile. RESULTS: Metabolomics analysis data showed that many metabolites involved in the biochemical pathways of lipid metabolisms such as polyunsaturated fatty acids, glycerolipids, and phospholipids were downregulated in the HHCys group. Short-term oral folic acid therapy significantly reduced their serum homocysteine level. However, the metabolic pathway alterations observed in folate-deficient HHCys-condition were unaltered even after the folic acid treatment. CONCLUSIONS: Our study revealed that people who have a folic acid deficiency with HHCys have an altered metabolite profile related to lipid metabolism, which cannot be reversed by short-term folic acid therapy.


Assuntos
Hiper-Homocisteinemia , Adolescente , Adulto , Ácido Fólico , Deficiência de Ácido Fólico/tratamento farmacológico , Homocisteína , Humanos , Hiper-Homocisteinemia/tratamento farmacológico , Metaboloma , Vitamina B 12 , Adulto Jovem
5.
Proteome Sci ; 19(1): 6, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33810819

RESUMO

BACKGROUND: Spotted stem borer- Chilo partellus - a Lepidopteran insect pest of Sorghum bicolor is responsible for major economic losses. It is an oligophagous pest, which bores through the plant stem, causing 'deadheart' and hampering the development of the main cob. We applied a label-free quantitative proteomics approach on three genotypes of S. bicolor with differential resistance/ susceptibility to insect pests, intending to identify the S. bicolor's systemic protein complement contributing to C. partellus tolerance. METHODS: The proteomes of S. bicolor with variable resistance to insect pests, ICSV700, IS2205 (resistant) and Swarna (susceptible) were investigated and compared using label-free quantitative proteomics to identify putative leaf proteins contributing to resistance to C. partellus. RESULTS: The multivariate analysis on a total of 967 proteins led to the identification of proteins correlating with insect resistance/susceptibility of S. bicolor. Upon C. partellus infestation S. bicolor responded by suppression of protein and amino acid biosynthesis, and induction of proteins involved in maintaining photosynthesis and responding to stresses. The gene ontology analysis revealed that C. partellus-responsive proteins in resistant S. bicolor genotypes were mainly involved in stress and defense, small molecule biosynthesis, amino acid metabolism, catalytic and translation regulation activities. At steady-state, the resistant S. bicolor genotypes displayed at least two-fold higher numbers of unique proteins than the susceptible genotype Swarna, mostly involved in catalytic activities. Gene expression analysis of selected candidates was performed on S. bicolor by artificial induction to mimic C. partellus infestation. CONCLUSION: The collection of identified proteins differentially expressed in resistant S. bicolor, are interesting candidates for further elucidation of their role in defense against insect pests.

6.
J Biosoc Sci ; 53(5): 663-682, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32782055

RESUMO

Adolescents, pregnant women and mothers of children under 2 years of age are in stages of life characterized by higher nutritional demands. The study measured the dietary diversity of 17,680 adolescent girls, pregnant women and mothers of children under age 2 years in the eastern Indian states of Bihar, Chhattisgarh and Odisha using data from the Swabhimaan baseline survey conducted in 2016. The association of women's mean Dietary Diversity Scores with socioeconomic, health and nutrition service indicators was assessed. The sampled population was socioeconomically more vulnerable than the average Indian population. There was not much variation in the types of foods consumed daily across target groups, with diet being predominantly cereal (98%) and vegetable (83%) based. Nearly 30% of the mothers had low Dietary Diversity Scores, compared with 25% of pregnant women and 24% of adolescent girls. In each target group, more than half of the respondents were unable to meet the Minimum Dietary Diversity score of at least five of ten food groups consumed daily. Irrespective of their background characteristics, mean Dietary Diversity Scores were significantly lower in Bihar than in Chhattisgarh and Odisha for all target groups. Having at least 6 years of education, belonging to a relatively rich household and possessing a ration card predicted mean dietary diversity. Project interventions of participatory women's group meetings improved mean Dietary Diversity Scores for mothers and adolescent girls. Considering the association between poverty and dietary diversity, the linkage between girls and women and nutrition-focused livelihoods and supplementary nutrition programmes needs to be tested.


Assuntos
Mães , Gestantes , Adolescente , Criança , Pré-Escolar , Dieta , Feminino , Humanos , Índia , Lactente , Estado Nutricional , Gravidez , População Rural
7.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445664

RESUMO

The target of rapamycin (TOR) protein kinase is an atypical Ser/Thr protein kinase and evolutionally conserved among yeasts, plants, and mammals. TOR has been established as a central hub for integrating nutrient, energy, hormone, and environmental signals in all the eukaryotes. Despite the conserved functions across eukaryotes, recent research has shed light on the multifaceted roles of TOR signaling in plant-specific functional and mechanistic features. One of the most specific features is the involvement of TOR in plant photosynthesis. The recent development of tools for the functional analysis of plant TOR has helped to uncover the involvement of TOR signaling in several steps preceding photoautotrophy and maintenance of photosynthesis. Here, we present recent novel findings relating to TOR signaling and its roles in regulating plant photosynthesis, including carbon nutrient sense, light absorptions, and leaf and chloroplast development. We also provide some gaps in our understanding of TOR function in photosynthesis that need to be addressed in the future.


Assuntos
Fotossíntese/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/fisiologia
8.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948261

RESUMO

The chloroplast has a central position in oxygenic photosynthesis and primary metabolism. In addition to these functions, the chloroplast has recently emerged as a pivotal regulator of plant responses to abiotic and biotic stress conditions. Chloroplasts have their own independent genomes and gene-expression machinery and synthesize phytohormones and a diverse range of secondary metabolites, a significant portion of which contribute the plant response to adverse conditions. Furthermore, chloroplasts communicate with the nucleus through retrograde signaling, for instance, reactive oxygen signaling. All of the above facilitate the chloroplast's exquisite flexibility in responding to environmental stresses. In this review, we summarize recent findings on the involvement of chloroplasts in plant regulatory responses to various abiotic and biotic stresses including heat, chilling, salinity, drought, high light environmental stress conditions, and pathogen invasions. This review will enrich the better understanding of interactions between chloroplast and environmental stresses, and will lay the foundation for genetically enhancing plant-stress acclimatization.


Assuntos
Cloroplastos/fisiologia , Estresse Fisiológico/fisiologia , Aclimatação , Cloroplastos/metabolismo , Resposta ao Choque Frio/fisiologia , Secas , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Resposta ao Choque Térmico/fisiologia , Fotossíntese , Reguladores de Crescimento de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais/genética , Proteínas de Plantas/genética , Plantas/genética , Plantas/metabolismo , Salinidade , Transdução de Sinais
9.
Molecules ; 26(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770890

RESUMO

Essential Oils (EOs) are expensive hydrocarbons produced exclusively by specific species in the plant kingdom. Their applications have deep roots in traditional herbal medicine, which lacks scientific evidence. Nowadays, more than ever, there is a growing global interest in research-based discoveries that maintain and promote health conditions. Consequently, EOs became a much attractive topic for both research and industry, with revenues reaching billions of dollars annually. In this work, we provide key guidance to all essential oil-bearing plants growing in the United Arab Emirates (UAE). The comprehensive data were collected following an extensive, up-to-date literature review. The results identified 137 plant species, including indigenous and naturalized ones, in the UAE, citing over 180 published research articles. The general overview included plant botanical names, synonyms, common names (Arabic and English), families and taxonomic authority. The study acts as a baseline and accelerator for research, industry and discoveries in multiple disciplines relying on essential oil-bearing plants.


Assuntos
Óleos Voláteis , Óleos de Plantas , Plantas/química , Ecossistema , Humanos , Óleos Voláteis/análise , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Óleos de Plantas/análise , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Plantas/classificação , Solo , Emirados Árabes Unidos , Tempo (Meteorologia)
10.
Entropy (Basel) ; 23(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34828099

RESUMO

Global navigation satellite systems have been used for reliable location-based services in outdoor environments. However, satellite-based systems are not suitable for indoor positioning due to low signal power inside buildings and low accuracy of 5 m. Future smart homes demand low-cost, high-accuracy and low-power indoor positioning systems that can provide accuracy of less than 5 m and enable battery operation for mobility and long-term use. We propose and implement an intelligent, highly accurate and low-power indoor positioning system for smart homes leveraging Gaussian Process Regression (GPR) model using information-theoretic gain based on reduction in differential entropy. The system is based on Time Difference of Arrival (TDOA) and uses ultra-low-power radio transceivers working at 434 MHz. The system has been deployed and tested using indoor measurements for two-dimensional (2D) positioning. In addition, the proposed system provides dual functionality with the same wireless links used for receiving telemetry data, with configurable data rates of up to 600 Kbauds. The implemented system integrates the time difference pulses obtained from the differential circuitry to determine the radio frequency (RF) transmitter node positions. The implemented system provides a high positioning accuracy of 0.68 m and 1.08 m for outdoor and indoor localization, respectively, when using GPR machine learning models, and provides telemetry data reception of 250 Kbauds. The system enables low-power battery operation with consumption of <200 mW power with ultra-low-power CC1101 radio transceivers and additional circuits with a differential amplifier. The proposed system provides low-cost, low-power and high-accuracy indoor localization and is an essential element of public well-being in future smart homes.

11.
J Cell Physiol ; 235(2): 891-899, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31240708

RESUMO

Adipose tissue is a complex and heterogenic tissue exhibiting high variability and appears to have multiple functions, especially in metabolic regulation. Change in carbohydrate source is reported to have a profound effect in the regular functioning of adipocytes. Here, we analyzed the role of two monosaccharides namely, glucose (5.2 and 25 nM), galactose (25 mM), and two disaccharides namely, lactose and sucrose (both at 25 mM) in the adipocyte differentiation process and its utilization by adipocytes as an energy source. The change in cell morphology, adipocyte-specific gene expression, and protein levels were analyzed at three different time points: 2, 6, and 48 hr. Oil Red O staining at Day 8 of differentiation showed that no other carbohydrates were able to increase lipid content as better as 25 mM glucose. Gene expression pattern was altered by the change in glucose concentration and sucrose was able to mimic the effect of glucose even though, the lipid synthesis was solely promoted by high glucose levels. Galactose and lactose did not show any effect in promoting adipocyte differentiation. The expression of PPAR γ was high in the presence of sucrose and galactose, possibly of adipogenic cocktail in enhancing the expression rather than the effect of carbohydrate. Acarbose, a potent glucosidase inhibitor was able to inhibit the lipid content in adipocytes grown with sucrose as a carbohydrate source and shows the possibility of its direct utilization. Lactate production by cells upon differentiation also proved the possible uptake of glucose after sucrose cleavage.


Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , Galactose/metabolismo , Glucose/metabolismo , Lactose/metabolismo , Sacarose/metabolismo , Células 3T3-L1 , Acarbose/farmacologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Linhagem Celular , Meios de Cultura/farmacologia , Expressão Gênica/efeitos dos fármacos , Glucosidases/antagonistas & inibidores , Camundongos , Obesidade/patologia
12.
Metabolomics ; 16(8): 87, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32772182

RESUMO

INTRODUCTION: Leptin is known to regulate pathways of energy metabolism, reproduction, and control appetite. Whether plasma leptin levels reflect changes in metabolites of these pathways is unknown. OBJECTIVES: We aimed to find whether there is an association between leptin levels and levels of metabolites of energy and hormone metabolism. METHODS: We performed an untargeted metabolomics analysis of plasma from 110 healthy adults (men: women = 1:1; aged 18-40 years), using liquid chromatography-tandem mass spectrometry. Blood samples were collected from all the study subjects in the fasting state. Clinical features and markers of obesity and Type 2 diabetes mellitus (T2DM) were assessed in all. The association between levels of metabolites and clinical and biochemical parameters was identified using the multivariable-adjusted linear regression model and PLS-DA analysis. RESULTS: The leptin level was found to have a significant association with a substantial number of metabolites in women and men. Leptin level was positively associated with glycocholic acid and arachidic acid, metabolites related to energy metabolisms, pregnanediol-3-glucuronide, a metabolite of progesterone metabolism, and quercetin 3'-sulfate, a diet-derived metabolite. Leptin level was negatively associated with ponasteroside A and barringtogenol C levels. Leptin level was positively correlated with adiponectin and negatively with total calorie intake and levels of triglyceride and very-low-density lipoprotein. Leptin levels were associated with lipid and sex hormone metabolism in women, while metabolites involved in amino acid metabolism were correlated to leptin in men. CONCLUSION: Our study indicates that leptin level reflects metabolome alterations and hence could be a useful marker to detect early changes in energy and hormone metabolisms.


Assuntos
Leptina/sangue , Adulto , Biomarcadores/sangue , Glicemia/metabolismo , Cromatografia Líquida/métodos , Dieta , Metabolismo Energético/fisiologia , Feminino , Humanos , Metabolismo dos Lipídeos , Lipídeos/sangue , Masculino , Metaboloma/fisiologia , Metabolômica/métodos , Obesidade/sangue , Espectrometria de Massas em Tandem/métodos
13.
Mol Cell Biochem ; 463(1-2): 147-160, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31595424

RESUMO

Amalaki rasayana, a traditional preparation, is widely used by Ayurvedic physicians for the treatment of inflammatory conditions, cardiovascular diseases, and cancer. Metabolic alterations induced by Amalaki rasayana intervention are unknown. We investigated the modulations in serum metabolomic profiles in Wistar rats following long-term oral administration of Amalaki rasayana. Global metabolic profiling was performed of the serum of rats administered with either Amalaki rasayana (AR) or ghee + honey (GH) for 18 months and control animals which were left untreated. Amalaki rasayana components were confirmed from AR extract using HR-LCMS analysis. Significant reductions in prostaglandin J2, 11-dehydrothromboxane B2, and higher levels of reduced glutathione and glycitein metabolites were observed in the serum of AR administered rats compared to the control groups. Eleven different metabolites classified as phospholipids, glycerophospholipids, glucoside derivatives, organic acids, and glycosphingolipid were exclusively observed in the AR administered rats. Pathway analysis suggests that altered metabolites in AR administered rats are those associated with different biochemical pathways of arachidonic acid metabolism, fatty acid metabolism, leukotriene metabolism, G-protein mediated events, phospholipid metabolism, and the immune system. Targeted metabolomics confirmed the presence of gallic acid, ellagic acid, and arachidonic acid components in the AR extract. The known activities of these components can be correlated with the altered metabolic profile following long-term AR administration. AR also activates IGF1R-Akt-Foxo3 signaling axis in heart tissues of rats administered with AR. Our study identifies AR components that induce alterations in lipid metabolism and immune pathways in animals which consume AR for an extended period.


Assuntos
Metabolismo dos Lipídeos , Metabolômica , Miocárdio , Extratos Vegetais/farmacologia , Prostaglandina D2/análogos & derivados , Transdução de Sinais , Animais , Glutationa/sangue , Glutationa/imunologia , Isoflavonas/sangue , Isoflavonas/imunologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/imunologia , Masculino , Miocárdio/imunologia , Miocárdio/metabolismo , Prostaglandina D2/biossíntese , Prostaglandina D2/imunologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Tromboxano B2/análogos & derivados , Tromboxano B2/sangue , Tromboxano B2/imunologia
14.
Pharmacol Res ; 158: 104858, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32430285

RESUMO

Angiogenesis is a finely co-ordinated, multi-step developmental process of the new vascular structure. Even though angiogenesis is regularly occurring in physiological events such as embryogenesis, in adults, it is restricted to specific tissue sites where rapid cell-turnover and membrane synthesis occurs. Both excessive and insufficient angiogenesis lead to vascular disorders such as cancer, ocular diseases, diabetic retinopathy, atherosclerosis, intra-uterine growth restriction, ischemic heart disease, stroke etc. Occurrence of altered lipid profile and vascular lipid deposition along with vascular disorders is a hallmark of impaired angiogenesis. Among lipoproteins, lipoprotein(a) needs special attention due to the presence of a multi-kringle protein subunit, apolipoprotein(a) [apo(a)], which is structurally homologous to many naturally occurring anti-angiogenic proteins such as plasminogen and angiostatin. Researchers have constructed different recombinant forms of apo(a) (rhLK68, rhLK8, RHACK2, KV-11, and AU-6) and successfully exploited its potential to inhibit unwanted angiogenesis during tumor metastasis and retinal neovascularization. Similar to naturally occurring anti-angiogenic proteins, apo(a) can directly interfere with angiogenic signaling pathways. Besides this, apo(a) can also exert its anti-angiogenic effect indirectly by inducing endothelial cell apoptosis, by inhibiting endothelial progenitor cell functions or by upregulating nuclear factors in endothelial cells via apo(a)-bound oxPLs. However, the impact of the anti-angiogenic potential of native apo(a) during physiological angiogenesis in embryos and wounded tissues is not yet explored. In this context, we review the studies so far done to demonstrate the anti-angiogenic activity of apo(a) and the recent developments in using apo(a) as a therapeutic agent to treat impaired angiogenesis during vascular disorders, with emphasis on the gaps in the literature.


Assuntos
Inibidores da Angiogênese/farmacologia , Apolipoproteínas A/genética , Apolipoproteínas A/fisiologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica/genética , Animais , Apolipoproteínas A/farmacologia , Humanos
15.
Mol Cell Biochem ; 451(1-2): 1-10, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29934862

RESUMO

Endocardial endothelium, which lines the chambers of the heart, is distinct in its origin, structure, and function. Characterization studies using genomics and proteomics have reported molecular signatures supporting the structural and functional heterogeneity of various endothelial cells. However, though functionally very important, no studies at protein level have been conducted so far characterizing endocardial endothelium. In this study, we used endothelial cells from pig heart to investigate if endocardial endothelial cells are distinct at the proteome level. Using a high-throughput liquid chromatography-tandem mass spectrometry for proteome profiling and expression, we identified sets of proteins that belong to specific biological processes and metabolic pathways in endocardial endothelial cells supporting its specific structural and functional roles. The study also identified several transcription factors and cell surface markers, which may have roles in the specificity of endocardial endothelium. The detection of sets proteins preferentially expressed in endocardial endothelium offers new insights into its role in the regulation of cardiac function. Data are made available through ProteomeXchange with identifier PXD009194.


Assuntos
Biomarcadores/metabolismo , Endocárdio/metabolismo , Endotélio Vascular/metabolismo , Proteoma/análise , Proteômica/métodos , Animais , Endocárdio/citologia , Endotélio Vascular/citologia , Masculino , Suínos
16.
BMC Public Health ; 19(1): 140, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704495

RESUMO

BACKGROUND: Kerala, the southern state of India, has experienced sudden rise in the prevalence estimates of diabetes. A cohort study on the incidence of type 2 diabetes mellitus (T2DM) in Kerala state thus aptly bridges the lacuna of incidence estimate of T2DM from a population at risk. METHODS: A 10-year prospective cohort study was carried out in two urban wards of central Kerala. The individuals who participated in the baseline survey in 2007 were again invited for a follow-up study in 2017. The data was analyzed using IBM SPSS Statistics for windows (version 21.0). Logistic regression analysis was used to estimate odds ratios and 95% confidence intervals. Findings are based on the 10-year follow-up data from 869 participants from the cohort. RESULTS: The overall follow-up and response rate of the study was 68.9 and 86.9% respectively. During the follow-up period, 190 people (21.9%) developed T2DM. The incidence rate of T2DM and impaired fasting glucose (IFG) were 24.5 per 1000 person years and 45.01 per 1000 person years respectively. Nearly 60% of participants with baseline IFG were converted to T2DM group in the follow-up period. Age > 45 years, family history of T2DM, BMI ≥ 25 kg/m2 and presence of central obesity emerged as important risk factors for incident T2DM. CONCLUSION: High incidence of prediabetes over diabetes observed in this study shows an epidemic trend of T2DM in Kerala, India. It requires an immediate public health action.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Estado Pré-Diabético/epidemiologia , Adulto , Feminino , Seguimentos , Humanos , Incidência , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco
17.
J Proteome Res ; 17(1): 276-289, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29028349

RESUMO

Previously, we identified that ß-hCG is expressed by BRCA1 mutated but not wild type breast cancers in vitro/in vivo and exhibited a novel event in ß-hCG overexpressing BRCA1 mutated HCC1937 cells where the cells were able to form spheres (HCC1937 ß spheres) in adherent cell culture plates even in the absence of any growth factors. These spheres express stem cell and EMT markers. In the present study, we carried out the total proteomic profiling of these HCC1937 ß spheres obtained from BRCA1 defective ß-hCG expressing stable breast cancer cells to analyze the cell signaling pathways that are active in these cells. Functional annotation revealed proteins (164 cellular and 97 secretory) predominantly involved in oxygen binding, nucleosome assembly, cytoskeleton organization, protein folding, etc. Many of the proteins identified from HCC1937 ß spheres in this study are also up regulated in breast cancers, which are directly linked with poor prognosis in human cancer samples as analyzed using TCGA data set. Survival analysis shows that ß-hCG expressing cancer patients are linked with poor survival rate. Interestingly, hemoglobins were identified at both cellular and secretory level in HCC1937 ß spheres and experiments after treating with ROS inducers revealed that ß-hCG induces hemoglobin and protects the cancer cells during oxidative stress. Our proteomic data strongly propose ß-hCG as an oncogenic molecule associated with BRCA1 mutation, and hence, targeting ß-hCG could be a strategy to treat BRCA1 defective breast cancers.


Assuntos
Proteína BRCA1/genética , Gonadotropina Coriônica Humana Subunidade beta/farmacologia , Proteômica/métodos , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Gonadotropina Coriônica Humana Subunidade beta/uso terapêutico , Hemoglobinas/análise , Humanos , Mutação , Estresse Oxidativo , Prognóstico , Análise de Sobrevida
18.
J Proteome Res ; 17(1): 698-709, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29185755

RESUMO

Progesterone is a biphasic hormone whose confounding role in breast cancer cells involves an initial proliferative surge, followed by sustained growth arrest. Recently we reported that progesterone induces a time- and concentration-dependent release of reactive oxygen species and thus regulates the antiproliferative activity in the breast cancer cell line. Furthermore, the expression of p27, a crucial cell cycle control protein, was regulated by binding of progesterone on progesterone receptor B, thus leading to antiproliferative signaling via multiple signaling pathways including p53, PTEN, and antioxidant systems. Here, we performed an LC-MS/MS analysis of three different breast cancer cell lines. Bioinformatics data analysis and functional classification of proteins revealed a role of progesterone in calcium signaling in MCF-7 cells, and the major differentially expressed calcium regulators were S100A11, S100A10, calreticulin, VDAC1, SERCA3, and SERCA1. Later on we confirmed it by a cell-line-based system having a calcium cameleon sensor targeted at endoplasmic reticulum and found moderate calcium efflux from endoplasmic reticulum upon progesterone treatment. Real-time PCR, Western blot, and TMRM staining confirmed the role of calcium signaling regulators VDAC1 and SERCA3 in progesterone response. Taking together all of these results with our previous studies, we suggest that progesterone, by regulating important proteins involved in calcium signaling and transport, can modulate cell proliferation and cell death. Furthermore, our research may open new avenues for the hypothesis that surgery conducted during the luteal phase of the menstrual cycle might facilitate improved patient survival.


Assuntos
Neoplasias da Mama/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Progesterona/farmacologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/fisiologia , Canal de Ânion 1 Dependente de Voltagem/fisiologia , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Células MCF-7 , Proteômica/métodos
19.
J Proteome Res ; 16(11): 4144-4155, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28959884

RESUMO

Chikungunya virus (CHIKV), a positive-stranded RNA virus, can cause neurological complications by infecting the major parenchymal cells of the brain such as neurons and astrocytes. A proteomic analysis of CHIKV-infected human astrocytic cell line U-87 MG revealed tight functional associations among the modulated proteins. The predominant cellular pathways involved were of transcription-translation machinery, cytoskeletol reorganization, apoptosis, ubiquitination, and metabolism. In the proteome, we could also identify a few proteins that are reported to be involved in host-virus interactions. One such protein, Nucleophosmin (NPM1)/B23, a nucleolar protein, showed enhanced cytoplasmic aggregation in CHIKV-infected cells. NPM1 aggregation was predominantly localized in areas wherein CHIKV antigen could be detected. Furthermore, we observed that inhibition of this aggregation using a specific NPM1 oligomerization inhibitor, NSC348884, caused a significant dose-dependent enhancement in virus replication. There was a marked increase in the amount of intracellular viral RNA, and ∼105-fold increase in progeny virions in infected cells. Our proteomic analysis provides a comprehensive spectrum of host proteins modulated in response to CHIKV infection in astrocytic cells. Our results also show that NPM1/B23, a multifunctional chaperone, plays a critical role in restricting CHIKV replication and is a possible target for antiviral strategies.


Assuntos
Astrócitos/química , Vírus Chikungunya/fisiologia , Proteínas Nucleares/fisiologia , Proteoma/análise , Linhagem Celular , Febre de Chikungunya/metabolismo , Humanos , Nucleofosmina , Replicação Viral
20.
Mol Cell Proteomics ; 14(8): 2160-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26025969

RESUMO

Tuberculosis, caused by Mycobacterium tuberculosis, still remains a major global health problem. The main obstacle in eradicating this disease is the ability of this pathogen to remain dormant in macrophages, and then reactivate later under immuno-compromised conditions. The physiology of hypoxic nonreplicating M. tuberculosis is well-studied using many in vitro dormancy models. However, the physiological changes that take place during the shift from dormancy to aerobic growth (reactivation) have rarely been subjected to a detailed investigation. In this study, we developed an in vitro reactivation system by re-aerating the virulent laboratory strain of M. tuberculosis that was made dormant employing Wayne's dormancy model, and compared the proteome profiles of dormant and reactivated bacteria using label-free one-dimensional LC/MS/MS analysis. The proteome of dormant bacteria was analyzed at nonreplicating persistent stage 1 (NRP1) and stage 2 (NRP2), whereas that of reactivated bacteria was analyzed at 6 and 24 h post re-aeration. Proteome of normoxially grown bacteria served as the reference. In total, 1871 proteins comprising 47% of the M. tuberculosis proteome were identified, and many of them were observed to be expressed differentially or uniquely during dormancy and reactivation. The number of proteins detected at different stages of dormancy (764 at NRP1, 691 at NRP2) and reactivation (768 at R6 and 983 at R24) was very low compared with that of the control (1663). The number of unique proteins identified during normoxia, NRP1, NRP2, R6, and R24 were 597, 66, 56, 73, and 94, respectively. We analyzed various biological functions during these conditions. Fluctuation in the relative quantities of proteins involved in energy metabolism during dormancy and reactivation was the most significant observation we made in this study. Proteins that are up-regulated or uniquely expressed during reactivation from dormancy offer to be attractive targets for therapeutic intervention to prevent reactivation of latent tuberculosis.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Aerobiose , Redes e Vias Metabólicas , Reação em Cadeia da Polimerase , Mapas de Interação de Proteínas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA