Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Psychiatry ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693319

RESUMO

Reduced processing speed is a core deficit in major depressive disorder (MDD) and has been linked to altered structural brain network connectivity. Ample evidence highlights the involvement of genetic-immunological processes in MDD and specific depressive symptoms. Here, we extended these findings by examining associations between polygenic scores for tumor necrosis factor-α blood levels (TNF-α PGS), structural brain connectivity, and processing speed in a large sample of MDD patients. Processing speed performance of n = 284 acutely depressed, n = 177 partially and n = 198 fully remitted patients, and n = 743 healthy controls (HC) was estimated based on five neuropsychological tests. Network-based statistic was used to identify a brain network associated with processing speed. We employed general linear models to examine the association between TNF-α PGS and processing speed. We investigated whether network connectivity mediates the association between TNF-α PGS and processing speed. We identified a structural network positively associated with processing speed in the whole sample. We observed a significant negative association between TNF-α PGS and processing speed in acutely depressed patients, whereas no association was found in remitted patients and HC. The mediation analysis revealed that brain connectivity partially mediated the association between TNF-α PGS and processing speed in acute MDD. The present study provides evidence that TNF-α PGS is associated with decreased processing speed exclusively in patients with acute depression. This association was partially mediated by structural brain connectivity. Using multimodal data, the current findings advance our understanding of cognitive dysfunction in MDD and highlight the involvement of genetic-immunological processes in its pathomechanisms.

2.
Hum Brain Mapp ; 45(8): e26682, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38825977

RESUMO

Multivariate techniques better fit the anatomy of complex neuropsychiatric disorders which are characterized not by alterations in a single region, but rather by variations across distributed brain networks. Here, we used principal component analysis (PCA) to identify patterns of covariance across brain regions and relate them to clinical and demographic variables in a large generalizable dataset of individuals with bipolar disorders and controls. We then compared performance of PCA and clustering on identical sample to identify which methodology was better in capturing links between brain and clinical measures. Using data from the ENIGMA-BD working group, we investigated T1-weighted structural MRI data from 2436 participants with BD and healthy controls, and applied PCA to cortical thickness and surface area measures. We then studied the association of principal components with clinical and demographic variables using mixed regression models. We compared the PCA model with our prior clustering analyses of the same data and also tested it in a replication sample of 327 participants with BD or schizophrenia and healthy controls. The first principal component, which indexed a greater cortical thickness across all 68 cortical regions, was negatively associated with BD, BMI, antipsychotic medications, and age and was positively associated with Li treatment. PCA demonstrated superior goodness of fit to clustering when predicting diagnosis and BMI. Moreover, applying the PCA model to the replication sample yielded significant differences in cortical thickness between healthy controls and individuals with BD or schizophrenia. Cortical thickness in the same widespread regional network as determined by PCA was negatively associated with different clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. PCA outperformed clustering and provided an easy-to-use and interpret method to study multivariate associations between brain structure and system-level variables. PRACTITIONER POINTS: In this study of 2770 Individuals, we confirmed that cortical thickness in widespread regional networks as determined by principal component analysis (PCA) was negatively associated with relevant clinical and demographic variables, including diagnosis, age, BMI, and treatment with antipsychotic medications or lithium. Significant associations of many different system-level variables with the same brain network suggest a lack of one-to-one mapping of individual clinical and demographic factors to specific patterns of brain changes. PCA outperformed clustering analysis in the same data set when predicting group or BMI, providing a superior method for studying multivariate associations between brain structure and system-level variables.


Assuntos
Transtorno Bipolar , Imageamento por Ressonância Magnética , Obesidade , Análise de Componente Principal , Humanos , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/patologia , Adulto , Feminino , Masculino , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Obesidade/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Análise por Conglomerados , Adulto Jovem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
3.
Mol Psychiatry ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036604

RESUMO

Up to 70% of patients with major depressive disorder present with psychomotor disturbance (PmD), but at the present time understanding of its pathophysiology is limited. In this study, we capitalized on a large sample of patients to examine the neural correlates of PmD in depression. This study included 820 healthy participants and 699 patients with remitted (n = 402) or current (n = 297) depression. Patients were further categorized as having psychomotor retardation, agitation, or no PmD. We compared resting-state functional connectivity (ROI-to-ROI) between nodes of the cerebral motor network between the groups, including primary motor cortex, supplementary motor area, sensory cortex, superior parietal lobe, caudate, putamen, pallidum, thalamus, and cerebellum. Additionally, we examined network topology of the motor network using graph theory. Among the currently depressed 55% had PmD (15% agitation, 29% retardation, and 11% concurrent agitation and retardation), while 16% of the remitted patients had PmD (8% retardation and 8% agitation). When compared with controls, currently depressed patients with PmD showed higher thalamo-cortical and pallido-cortical connectivity, but no network topology alterations. Currently depressed patients with retardation only had higher thalamo-cortical connectivity, while those with agitation had predominant higher pallido-cortical connectivity. Currently depressed patients without PmD showed higher thalamo-cortical, pallido-cortical, and cortico-cortical connectivity, as well as altered network topology compared to healthy controls. Remitted patients with PmD showed no differences in single connections but altered network topology, while remitted patients without PmD did not differ from healthy controls in any measure. We found evidence for compensatory increased cortico-cortical resting-state functional connectivity that may prevent psychomotor disturbance in current depression, but may perturb network topology. Agitation and retardation show specific connectivity signatures. Motor network topology is slightly altered in remitted patients arguing for persistent changes in depression. These alterations in functional connectivity may be addressed with non-invasive brain stimulation.

4.
Mol Psychiatry ; 28(3): 1057-1063, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36639510

RESUMO

Many therapeutic interventions in psychiatry can be viewed as attempts to influence the brain's large-scale, dynamic network state transitions. Building on connectome-based graph analysis and control theory, Network Control Theory is emerging as a powerful tool to quantify network controllability-i.e., the influence of one brain region over others regarding dynamic network state transitions. If and how network controllability is related to mental health remains elusive. Here, from Diffusion Tensor Imaging data, we inferred structural connectivity and inferred calculated network controllability parameters to investigate their association with genetic and familial risk in patients diagnosed with major depressive disorder (MDD, n = 692) and healthy controls (n = 820). First, we establish that controllability measures differ between healthy controls and MDD patients while not varying with current symptom severity or remission status. Second, we show that controllability in MDD patients is associated with polygenic scores for MDD and psychiatric cross-disorder risk. Finally, we provide evidence that controllability varies with familial risk of MDD and bipolar disorder as well as with body mass index. In summary, we show that network controllability is related to genetic, individual, and familial risk in MDD patients. We discuss how these insights into individual variation of network controllability may inform mechanistic models of treatment response prediction and personalized intervention-design in mental health.


Assuntos
Conectoma , Transtorno Depressivo Maior , Humanos , Imagem de Tensor de Difusão , Predisposição Genética para Doença , Imageamento por Ressonância Magnética/métodos , Encéfalo
5.
Mol Psychiatry ; 28(11): 4613-4621, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37714950

RESUMO

Childhood maltreatment (CM) has been associated with changes in structural brain connectivity even in the absence of mental illness. Social support, an important protective factor in the presence of childhood maltreatment, has been positively linked to white matter integrity. However, the shared effects of current social support and CM and their association with structural connectivity remain to be investigated. They might shed new light on the neurobiological basis of the protective mechanism of social support. Using connectome-based predictive modeling (CPM), we analyzed structural connectomes of N = 904 healthy adults derived from diffusion-weighted imaging. CPM predicts phenotypes from structural connectivity through a cross-validation scheme. Distinct and shared networks of white matter tracts predicting childhood trauma questionnaire scores and the social support questionnaire were identified. Additional analyses were applied to assess the stability of the results. CM and social support were predicted significantly from structural connectome data (all rs ≥ 0.119, all ps ≤ 0.016). Edges predicting CM and social support were inversely correlated, i.e., positively correlated with CM and negatively with social support, and vice versa, with a focus on frontal and temporal regions including the insula and superior temporal lobe. CPM reveals the predictive value of the structural connectome for CM and current social support. Both constructs are inversely associated with connectivity strength in several brain tracts. While this underlines the interconnectedness of these experiences, it suggests social support acts as a protective factor following adverse childhood experiences, compensating for brain network alterations. Future longitudinal studies should focus on putative moderating mechanisms buffering these adverse experiences.


Assuntos
Maus-Tratos Infantis , Conectoma , Testes Psicológicos , Autorrelato , Substância Branca , Adulto , Humanos , Criança , Conectoma/métodos , Imageamento por Ressonância Magnética , Encéfalo
6.
Neuroimage ; 224: 117393, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971266

RESUMO

The momentary global functional state of the brain is reflected in its electric field configuration and cluster analytical approaches have consistently shown four configurations, referred to as EEG microstate classes A to D. Changes in microstate parameters are associated with a number of neuropsychiatric disorders, task performance, and mental state establishing their relevance for cognition. However, the common practice to use eye-closed resting state data to assess the temporal dynamics of microstate parameters might induce systematic confounds related to vigilance levels. Here, we studied the dynamics of microstate parameters in two independent data sets and showed that the parameters of microstates are strongly associated with vigilance level assessed both by EEG power analysis and fMRI global signal. We found that the duration and contribution of microstate class C, as well as transition probabilities towards microstate class C were positively associated with vigilance, whereas the sign was reversed for microstate classes A and B. Furthermore, in looking for the origins of the correspondence between microstates and vigilance level, we found Granger-causal effects of vigilance levels on microstate sequence parameters. Collectively, our findings suggest that duration and occurrence of microstates have a different origin and possibly reflect different physiological processes. Finally, our findings indicate the need for taking vigilance levels into consideration in resting-sate EEG investigations.


Assuntos
Encéfalo , Cognição/fisiologia , Eletroencefalografia , Vigília/fisiologia , Idoso , Idoso de 80 Anos ou mais , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Mapeamento Encefálico , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Descanso/fisiologia , Processamento de Sinais Assistido por Computador
7.
Hum Brain Mapp ; 41(9): 2334-2346, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32090423

RESUMO

Electroencephalogram (EEG) microstates that represent quasi-stable, global neuronal activity are considered as the building blocks of brain dynamics. Therefore, the analysis of microstate sequences is a promising approach to understand fast brain dynamics that underlie various mental processes. Recent studies suggest that EEG microstate sequences are non-Markovian and nonstationary, highlighting the importance of the sequential flow of information between different brain states. These findings inspired us to model these sequences using Recurrent Neural Networks (RNNs) consisting of long-short-term-memory (LSTM) units to capture the complex temporal dependencies. Using an LSTM-based auto encoder framework and different encoding schemes, we modeled the microstate sequences at multiple time scales (200-2,000 ms) aiming to capture stably recurring microstate patterns within and across subjects. We show that RNNs can learn underlying microstate patterns with high accuracy and that the microstate trajectories are subject invariant at shorter time scales (≤400 ms) and reproducible across sessions. Significant drop in the reconstruction accuracy was observed for longer sequence lengths of 2,000 ms. These findings indirectly corroborate earlier studies which indicated that EEG microstate sequences exhibit long-range dependencies with finite memory content. Furthermore, we find that the latent representations learned by the RNNs are sensitive to external stimulation such as stress while the conventional univariate microstate measures (e.g., occurrence, mean duration, etc.) fail to capture such changes in brain dynamics. While RNNs cannot be configured to identify the specific discriminating patterns, they have the potential for learning the underlying temporal dynamics and are sensitive to sequence aberrations characterized by changes in metal processes. Empowered with the macroscopic understanding of the temporal dynamics that extends beyond short-term interactions, RNNs offer a reliable alternative for exploring system level brain dynamics using EEG microstate sequences.


Assuntos
Córtex Cerebral/fisiologia , Conectoma/métodos , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Estresse Psicológico/fisiopatologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Conjuntos de Dados como Assunto , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Psicológico/diagnóstico por imagem , Fatores de Tempo
8.
PLoS Comput Biol ; 14(9): e1006486, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30260958

RESUMO

Biological data sets are typically characterized by high dimensionality and low effect sizes. A powerful method for detecting systematic differences between experimental conditions in such multivariate data sets is multivariate pattern analysis (MVPA), particularly pattern classification. However, in virtually all applications, data from the classes that correspond to the conditions of interest are not homogeneous but contain subclasses. Such subclasses can for example arise from individual subjects that contribute multiple data points, or from correlations of items within classes. We show here that in multivariate data that have subclasses nested within its class structure, these subclasses introduce systematic information that improves classifiability beyond what is expected by the size of the class difference. We analytically prove that this subclass bias systematically inflates correct classification rates (CCRs) of linear classifiers depending on the number of subclasses as well as on the portion of variance induced by the subclasses. In simulations, we demonstrate that subclass bias is highest when between-class effect size is low and subclass variance high. This bias can be reduced by increasing the total number of subclasses. However, we can account for the subclass bias by using permutation tests that explicitly consider the subclass structure of the data. We illustrate our result in several experiments that recorded human EEG activity, demonstrating that parametric statistical tests as well as typical trial-wise permutation fail to determine significance of classification outcomes correctly.


Assuntos
Biologia Computacional/métodos , Eletroencefalografia/métodos , Análise Multivariada , Neuroimagem/métodos , Reconhecimento Automatizado de Padrão , Viés , Simulação por Computador , Potenciais Evocados , Humanos , Modelos Lineares , Distribuição Normal , Reprodutibilidade dos Testes , Projetos de Pesquisa , Processamento de Sinais Assistido por Computador
9.
Neuroimage ; 159: 449-458, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765057

RESUMO

Multivariate pattern analysis (MVPA) methods are now widely used in life-science research. They have great potential but their complexity also bears unexpected pitfalls. In this paper, we explore the possibilities that arise from the high sensitivity of MVPA for stimulus-related differences, which may confound estimations of class differences during decoding of cognitive concepts. We propose a method that takes advantage of concept-unrelated grouping factors, uses blocked permutation tests, and gradually manipulates the proportion of concept-related information in data while the stimulus-related, concept-irrelevant factors are held constant. This results in a concept-response curve, which shows the relative contribution of these two components, i.e. how much of the decoding performance is specific to higher-order category processing and to lower order stimulus processing. It also allows separating stimulus-related from concept-related neuronal processing, which cannot be achieved experimentally. We applied our method to three different EEG data sets with different levels of stimulus-related confound to decode concepts of digits vs. letters, faces vs. houses, and animals vs. fruits based on event-related potentials at the single trial level. We show that exemplar-specific differences between stimuli can drive classification accuracy to above chance levels even in the absence of conceptual information. By looking into time-resolved windows of brain activity, concept-response curves can help characterize the time-course of lower-level and higher-level neural information processing and detect the corresponding temporal and spatial signatures of the corresponding cognitive processes. In particular, our results show that perceptual information is decoded earlier in time than conceptual information specific to processing digits and letters. In addition, compared to the stimulus-level predictive sites, concept-related topographies are spread more widely and, at later time points, reach the frontal cortex. Thus, our proposed method yields insights into cognitive processing as well as corresponding brain responses.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Processamento de Sinais Assistido por Computador , Eletroencefalografia , Humanos , Análise Multivariada
10.
Hum Brain Mapp ; 37(5): 1842-55, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27015748

RESUMO

Multivariate pattern analysis (MVPA) has recently become a popular tool for data analysis. Often, classification accuracy as quantified by correct classification rate (CCR) is used to illustrate the size of the effect under investigation. However, we show that in low sample size (LSS), low effect size (LES) data, which is typical in neuroscience, the distribution of CCRs from cross-validation of linear MVPA is asymmetric and can show classification rates considerably below what would be expected from chance classification. Conversely, the mode of the distribution in these cases is above expected chance levels, leading to a spuriously high number of above chance CCRs. This unexpected distribution has strong implications when using MVPA for hypothesis testing. Our analyses warrant the conclusion that CCRs do not well reflect the size of the effect under investigation. Moreover, the skewness of the null-distribution precludes the use of many standard parametric tests to assess significance of CCRs. We propose that MVPA results should be reported in terms of P values, which are estimated using randomization tests. Also, our results show that cross-validation procedures using a low number of folds, e.g. twofold, are generally more sensitive, even though the average CCRs are often considerably lower than those obtained using a higher number of folds. Hum Brain Mapp 37:1842-1855, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Encéfalo/anatomia & histologia , Modelos Neurológicos , Neurociências , Eletroencefalografia , Processamento Eletrônico de Dados , Potenciais Evocados/fisiologia , Humanos , Neurociências/classificação , Probabilidade
11.
Neurosci Biobehav Rev ; 162: 105693, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697379

RESUMO

Music and ketamine are both known to affect therapeutic outcomes, but few studies have investigated their co-administration. This scoping review describes the existing literature on the joint use of music and ketamine-or esketamine (the S(+) enantiomer of ketamine)-in humans. The review considers that extant studies have explored the intersection of ketamine/esketamine and music in healthy volunteers and in patients of various age groups, at different dosages, through different treatment processes, and have varied the sequence of playing music relative to ketamine/esketamine administration. Studies investigating the use of music during ketamine anesthesia are also included in the review because anesthesia and sedation were the early drivers of ketamine use. Studies pertaining to recreational ketamine use were omitted. The review was limited to articles published in the English language but not restricted by publication year. To the best of our knowledge, this scoping review is the first comprehensive exploration of the interplay between music and ketamine/esketamine and offers valuable insights to researchers interested in designing future studies.


Assuntos
Ketamina , Música , Ketamina/administração & dosagem , Ketamina/farmacologia , Humanos , Musicoterapia , Anestésicos Dissociativos/administração & dosagem , Anestésicos Dissociativos/farmacologia
12.
J Affect Disord ; 355: 12-21, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38548192

RESUMO

BACKGROUND: Depressive symptoms seem to be interrelated in a complex and self-reinforcing way. To gain a better understanding of this complexity, the inclusion of theoretically relevant constructs (such as risk and protective factors) offers a comprehensive view into the complex mechanisms underlying depression. METHODS: Cross-sectional data from individuals diagnosed with a major depressive disorder (N = 986) and healthy controls (N = 1049) were analyzed. Participants self-reported their depressive symptoms, as well as several risk factors and protective factors. Regularized partial correlation networks were estimated for each group and compared using a network comparison test. RESULTS: Symptoms of depression were more strongly connected in the network of depressed patients than in healthy controls. Among the risk factors, perceived stress, the experience of negative life events, emotional neglect, and emotional abuse were the most centrally embedded in both networks. However, the centrality of risk factors did not significantly differ between the two groups. Among the protective factors, social support, personal competence, and acceptance were the most central in both networks, where the latter was significantly more strongly associated with the symptom of self-hate in depressed patients. CONCLUSION: The network analysis revealed that key symptoms of depression were more strongly connected for depressed patients than for healthy controls, and that risk and protective factors play an important role, particularly perceived stress in both groups and an accepting attitude for depressed patients. However, the purpose of this study is hypothesis generating and assisting in the potential selection of non-symptom nodes for future research.


Assuntos
Depressão , Transtorno Depressivo Maior , Humanos , Depressão/etiologia , Transtorno Depressivo Maior/epidemiologia , Fatores de Proteção , Estudos Transversais , Autorrelato
13.
Neuropsychopharmacology ; 49(5): 814-823, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332015

RESUMO

Patients with bipolar disorder (BD) show alterations in both gray matter volume (GMV) and white matter (WM) integrity compared with healthy controls (HC). However, it remains unclear whether the phenotypically distinct BD subtypes (BD-I and BD-II) also exhibit brain structural differences. This study investigated GMV and WM differences between HC, BD-I, and BD-II, along with clinical and genetic associations. N = 73 BD-I, n = 63 BD-II patients and n = 136 matched HC were included. Using voxel-based morphometry and tract-based spatial statistics, main effects of group in GMV and fractional anisotropy (FA) were analyzed. Associations between clinical and genetic features and GMV or FA were calculated using regression models. For FA but not GMV, we found significant differences between groups. BD-I patients showed lower FA compared with BD-II patients (ptfce-FWE = 0.006), primarily in the anterior corpus callosum. Compared with HC, BD-I patients exhibited lower FA in widespread clusters (ptfce-FWE < 0.001), including almost all major projection, association, and commissural fiber tracts. BD-II patients also demonstrated lower FA compared with HC, although less pronounced (ptfce-FWE = 0.049). The results remained unchanged after controlling for clinical and genetic features, for which no independent associations with FA or GMV emerged. Our findings suggest that, at a neurobiological level, BD subtypes may reflect distinct degrees of disease expression, with increasing WM microstructure disruption from BD-II to BD-I. This differential magnitude of microstructural alterations was not clearly linked to clinical and genetic variables. These findings should be considered when discussing the classification of BD subtypes within the spectrum of affective disorders.


Assuntos
Transtorno Bipolar , Substância Branca , Humanos , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/genética , Substância Cinzenta/diagnóstico por imagem , Encéfalo , Substância Branca/diagnóstico por imagem , Córtex Cerebral , Anisotropia
14.
JAMA Psychiatry ; 81(4): 386-395, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38198165

RESUMO

Importance: Biological psychiatry aims to understand mental disorders in terms of altered neurobiological pathways. However, for one of the most prevalent and disabling mental disorders, major depressive disorder (MDD), no informative biomarkers have been identified. Objective: To evaluate whether machine learning (ML) can identify a multivariate biomarker for MDD. Design, Setting, and Participants: This study used data from the Marburg-Münster Affective Disorders Cohort Study, a case-control clinical neuroimaging study. Patients with acute or lifetime MDD and healthy controls aged 18 to 65 years were recruited from primary care and the general population in Münster and Marburg, Germany, from September 11, 2014, to September 26, 2018. The Münster Neuroimaging Cohort (MNC) was used as an independent partial replication sample. Data were analyzed from April 2022 to June 2023. Exposure: Patients with MDD and healthy controls. Main Outcome and Measure: Diagnostic classification accuracy was quantified on an individual level using an extensive ML-based multivariate approach across a comprehensive range of neuroimaging modalities, including structural and functional magnetic resonance imaging and diffusion tensor imaging as well as a polygenic risk score for depression. Results: Of 1801 included participants, 1162 (64.5%) were female, and the mean (SD) age was 36.1 (13.1) years. There were a total of 856 patients with MDD (47.5%) and 945 healthy controls (52.5%). The MNC replication sample included 1198 individuals (362 with MDD [30.1%] and 836 healthy controls [69.9%]). Training and testing a total of 4 million ML models, mean (SD) accuracies for diagnostic classification ranged between 48.1% (3.6%) and 62.0% (4.8%). Integrating neuroimaging modalities and stratifying individuals based on age, sex, treatment, or remission status does not enhance model performance. Findings were replicated within study sites and also observed in structural magnetic resonance imaging within MNC. Under simulated conditions of perfect reliability, performance did not significantly improve. Analyzing model errors suggests that symptom severity could be a potential focus for identifying MDD subgroups. Conclusion and Relevance: Despite the improved predictive capability of multivariate compared with univariate neuroimaging markers, no informative individual-level MDD biomarker-even under extensive ML optimization in a large sample of diagnosed patients-could be identified.


Assuntos
Transtorno Depressivo Maior , Humanos , Feminino , Masculino , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Imagem de Tensor de Difusão , Estudos de Coortes , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética , Biomarcadores
15.
J Neural Eng ; 20(1)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36633267

RESUMO

Objective:Recent progress in network sciences has made it possible to apply key findings from control theory to the study of networks. Referred to as network control theory, this framework describes how the interactions between interconnected system elements and external energy sources, potentially constrained by different optimality criteria, result in complex network behavior. A typical example is the quantification of the functional role certain brain regions or symptoms play in shaping the temporal dynamics of brain activity or the clinical course of a disease, a property that is quantified in terms of the so-called controllability metrics. Critically though, contrary to the engineering context in which control theory was originally developed, a mathematical understanding of the network nodes and connections in neurosciences cannot be assumed. For instance, in the case of psychological systems such as those studied to understand psychiatric disorders, a potentially large set of related variables are unknown. As such, while the measures offered by network control theory would be mathematically correct, in that they can be calculated with high precision, they could have little translational values with respect to their putative role suggested by controllability metrics. It is therefore critical to understand if and how the controllability metrics estimated over subnetworks would deviate, if access to the complete set of variables, as is common in neurosciences, cannot be taken for granted.Approach:In this paper, we use a host of simulations based on synthetic as well as structural magnetic resonance imaging (MRI) data to study the potential deviation of controllability metrics in sub- compared to the full networks. Specifically, we estimate average- and modal-controllability, two of the most widely used controllability measures in neurosciences, in a large number of settings where we systematically vary network type, network size, and edge density.Main results:We find out, across all network types we test, that average and modal controllability are systematically, over- or underestimated depending on the number of nodes in the sub- and full network and the edge density.Significance:Finally, we provide formal theoretical proof that our observations generalize to any network type and discuss the ramifications of this systematic bias and potential solutions to alleviate the problem.


Assuntos
Encéfalo , Transtornos Mentais , Humanos , Imageamento por Ressonância Magnética
16.
Sci Rep ; 13(1): 13830, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620407

RESUMO

Despite the growing deployment of network representation to comprehend psychological phenomena, the question of whether and how networks can effectively describe the effects of psychological interventions remains elusive. Network control theory, the engineering study of networked interventions, has recently emerged as a viable methodology to characterize and guide interventions. However, there is a scarcity of empirical studies testing the extent to which it can be useful within a psychological context. In this paper, we investigate a representative psychological intervention experiment, use network control theory to model the intervention and predict its effect. Using this data, we showed that: (1) the observed psychological effect, in terms of sensitivity and specificity, relates to the regional network control theoretic metrics (average and modal controllability), (2) the size of change following intervention negatively correlates with a whole-network topology that quantifies the "ease" of change as described by control theory (control energy), and (3) responses after intervention can be predicted based on formal results from control theory. These insights assert that network control theory has significant potential as a tool for investigating psychological interventions. Drawing on this specific example and the overarching framework of network control theory, we further elaborate on the conceptualization of psychological interventions, methodological considerations, and future directions in this burgeoning field.


Assuntos
Benchmarking , Intervenção Psicossocial , Formação de Conceito , Pesquisa Empírica , Engenharia
17.
Front Aging Neurosci ; 15: 1085153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920384

RESUMO

Background: Controllability is a measure of the brain's ability to orchestrate neural activity which can be quantified in terms of properties of the brain's network connectivity. Evidence from the literature suggests that aging can exert a general effect on whole-brain controllability. Mounting evidence, on the other hand, suggests that parenthood and motherhood in particular lead to long-lasting changes in brain architecture that effectively slow down brain aging. We hypothesize that parenthood might preserve brain controllability properties from aging. Methods: In a sample of 814 healthy individuals (aged 33.9 ± 12.7 years, 522 females), we estimate whole-brain controllability and compare the aging effects in subjects with vs. those without children. We use diffusion tensor imaging (DTI) to estimate the brain structural connectome. The level of brain control is then calculated from the connectomic properties of the brain structure. Specifically, we measure the network control over many low-energy state transitions (average controllability) and the network control over difficult-to-reach states (modal controllability). Results and conclusion: In nulliparous females, whole-brain average controllability increases, and modal controllability decreases with age, a trend that we do not observe in parous females. Statistical comparison of the controllability metrics shows that modal controllability is higher and average controllability is lower in parous females compared to nulliparous females. In men, we observed the same trend, but the difference between nulliparous and parous males do not reach statistical significance. Our results provide strong evidence that parenthood contradicts aging effects on brain controllability and the effect is stronger in mothers.

18.
Schizophrenia (Heidelb) ; 9(1): 35, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248240

RESUMO

Syntax, the grammatical structure of sentences, is a fundamental aspect of language. It remains debated whether reduced syntactic complexity is unique to schizophrenia spectrum disorder (SSD) or whether it is also present in major depressive disorder (MDD). Furthermore, the association of syntax (including syntactic complexity and diversity) with language-related neuropsychology and psychopathological symptoms across disorders remains unclear. Thirty-four SSD patients and thirty-eight MDD patients diagnosed according to DSM-IV-TR as well as forty healthy controls (HC) were included and tasked with describing four pictures from the Thematic Apperception Test. We analyzed the produced speech regarding its syntax delineating measures for syntactic complexity (the total number of main clauses embedding subordinate clauses) and diversity (number of different types of complex sentences). We performed cluster analysis to identify clusters based on syntax and investigated associations of syntactic, to language-related neuropsychological (verbal fluency and verbal episodic memory), and psychopathological measures (positive and negative formal thought disorder) using network analyses. Syntax in SSD was significantly reduced in comparison to MDD and HC, whereas the comparison of HC and MDD revealed no significant differences. No associations were present between speech measures and current medication, duration and severity of illness, age or sex; the single association accounted for was education. A cluster analysis resulted in four clusters with different degrees of syntax across diagnoses. Subjects with less syntax exhibited pronounced positive and negative symptoms and displayed poorer performance in executive functioning, global functioning, and verbal episodic memory. All cluster-based networks indicated varying degrees of domain-specific and cross-domain connections. Measures of syntactic complexity were closely related while syntactic diversity appeared to be a separate node outside of the syntactic network. Cross-domain associations were more salient in more complex syntactic production.

19.
PNAS Nexus ; 2(2): pgad032, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36874281

RESUMO

Electroconvulsive Therapy (ECT) is arguably the most effective intervention for treatment-resistant depression. While large interindividual variability exists, a theory capable of explaining individual response to ECT remains elusive. To address this, we posit a quantitative, mechanistic framework of ECT response based on Network Control Theory (NCT). Then, we empirically test our approach and employ it to predict ECT treatment response. To this end, we derive a formal association between Postictal Suppression Index (PSI)-an ECT seizure quality index-and whole-brain modal and average controllability, NCT metrics based on white-matter brain network architecture, respectively. Exploiting the known association of ECT response and PSI, we then hypothesized an association between our controllability metrics and ECT response mediated by PSI. We formally tested this conjecture in N = 50 depressive patients undergoing ECT. We show that whole-brain controllability metrics based on pre-ECT structural connectome data predict ECT response in accordance with our hypotheses. In addition, we show the expected mediation effects via PSI. Importantly, our theoretically motivated metrics are at least on par with extensive machine learning models based on pre-ECT connectome data. In summary, we derived and tested a control-theoretic framework capable of predicting ECT response based on individual brain network architecture. It makes testable, quantitative predictions regarding individual therapeutic response, which are corroborated by strong empirical evidence. Our work might constitute a starting point for a comprehensive, quantitative theory of personalized ECT interventions rooted in control theory.

20.
Biol Psychiatry ; 94(8): 650-660, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37028741

RESUMO

BACKGROUND: Negative stressful life events and deprivation of social support play critical roles in the development and maintenance of major depressive disorder (MDD). The present study aimed to investigate in a large sample of patients with MDD and healthy control participants (HCs) whether these effects are also reflected in white matter (WM) integrity. METHODS: In this diffusion tensor imaging study, 793 patients with MDD and 793 age- and sex-matched HCs were drawn from the Marburg-Münster Affective Disorders Cohort Study (MACS) and completed the Life Events Questionnaire (LEQ) and Social Support Questionnaire (SSQ). Generalized linear models were performed to test voxelwise associations between fractional anisotropy (FA) and diagnosis (analysis 1), LEQ (analysis 2), and SSQ (analysis 3). We examined whether SSQ interacts with LEQ on FA or is independently associated with improved WM integrity (analysis 4). RESULTS: Patients with MDD showed lower FA in several frontotemporal association fibers compared with HCs (pTFCE-FWE = .028). Across both groups, LEQ correlated negatively with FA in widely distributed WM tracts (pTFCE-FWE = .023), while SSQ correlated positively with FA in the corpus callosum (pTFCE-FWE = .043). Modeling the combined association of both variables on FA revealed significant-and antagonistic-main effects of LEQ (pTFCE-FWE = .031) and SSQ (pTFCE-FWE = .037), but no interaction of SSQ × LEQ. CONCLUSIONS: Our results indicate that negative stressful life events and social support are both related to WM integrity in opposing directions. The associations did not differ between patients with MDD and HCs, suggesting more general, rather than depression-specific, mechanisms. Furthermore, social support appears to contribute to improved WM integrity independent of stressful life events.


Assuntos
Transtorno Depressivo Maior , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão , Transtorno Depressivo Maior/diagnóstico por imagem , Estudos de Coortes , Anisotropia , Apoio Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA