Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 166: 112193, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33706212

RESUMO

Land use in the catchments draining to the Great Barrier Reef lagoon has changed considerably since the introduction of livestock grazing, various crops, mining and urban development. Together these changes have resulted in increased pollutant loads and impaired coastal water quality. This study compiled records to produce annual time-series since 1860 of human population, livestock numbers and agricultural areas at the scale of surface drainage river basins, natural resource management regions and the whole Great Barrier Reef catchment area. Cattle and several crops have experienced progressive expansion interspersed by declines associated with droughts and diseases. Land uses which have experienced all time maxima since the year 2000 include cattle numbers and the areas of sugar cane, bananas and cotton. A Burdekin Basin case study shows that sediment loads initially increased with the introduction of livestock and mining, remained elevated with agricultural development, and declined slightly with the Burdekin Falls Dam construction.


Assuntos
Sedimentos Geológicos , Rios , Agricultura , Animais , Bovinos , Conservação dos Recursos Naturais , Monitoramento Ambiental , Recursos Naturais
2.
Ecol Evol ; 6(16): 5950-63, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27547368

RESUMO

The primary objective of this study was to test the relevance of hydrological classification and class differences to the characteristics of woody riparian vegetation in a subtropical landscape in Queensland, Australia. We followed classification procedures of the environmental flow framework ELOHA - Ecological Limits of Hydrologic Alteration. Riparian surveys at 44 sites distributed across five flow classes recorded 191 woody riparian species and 15, 500 individuals. There were differences among flow classes for riparian species richness, total abundance, and abundance of regenerating native trees and shrubs. There were also significant class differences in the occurrence of three common tree species, and 21 indicator species (mostly native taxa) further distinguished the vegetation characteristics of each flow class. We investigated the influence of key drivers of riparian vegetation structure (climate, depth to water table, stream-specific power, substrate type, degree of hydrologic alteration, and land use) on riparian vegetation. Patterns were explained largely by climate, particularly annual rainfall and temperature. Strong covarying drivers (hydrology and climate) prevented us from isolating the independent influences of these drivers on riparian assemblage structure. The prevalence of species considered typically rheophytic in some flow classes implies a more substantial role for flow in these classes but needs further testing. No relationships were found between land use and riparian vegetation composition and structure. This study demonstrates the relevance of flow classification to the structure of riparian vegetation in a subtropical landscape, and the influence of covarying drivers on riparian patterns. Management of environmental flows to influence riparian vegetation assemblages would likely have most potential in sites dominated by rheophytic species where hydrological influences override other controls. In contrast, where vegetation assemblages are dominated by a diverse array of typical rainforest species, and other factors including broad-scale climatic gradients and topographic variables have greater influence than hydrology, riparian vegetation is likely to be less responsive to environmental flow management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA