Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 51(7): 1609-1620, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29924584

RESUMO

Research on graphene abounds, from fundamental science to device applications. In pursuit of complementary morphologies, formation of graphene foams is often preferred over the native two-dimensional (2D) forms due to the higher available area. Graphene foams have been successfully prepared by several routes including chemical vapor deposition (CVD) methods and by wet-chemical approaches. For these methods, one often needs either high temperature furnaces and highly pure gases or large amounts of strong acids and oxidants. In 2014, using a commercial laser scribing system as found in most machine shops, a direct lasing of polyimide (PI) plastic films in the air converted the PI into 3D porous graphene, a material termed laser-induced graphene (LIG). This is a one-step method without the need for high-temperature reaction conditions, solvent, or subsequent treatments, and it affords graphene with many five-and seven-membered rings. With such an atomic arrangement, one might call LIG "kinetic graphene" since there is no annealing in the process that causes the rearrangement to the preferred all-six-membered-ring form. In this Account, we will first introduce the approaches that have been developed for making LIG and to control the morphology as either porous sheets or fibrils, and to control porosity, composition, and surface properties. The surfaces can be varied from being either superhydrophilic with a 0° contact angle with water to being superhydrophobic having >150° contact angle with water. While it was initially thought that the LIG process could only be performed on PI, it was later shown that a host of other polymeric substrates, nonpolymers, metal/plastic composites, and biodegradable and naturally occurring materials and foods could be used as platforms for generating LIG. Methods of preparation include roll-to-roll production for fabrication of in-plane electronics and two different 3D printing (additive manufacturing) routes to specific shapes of LIG monoliths using both laminated object manufacturing and powder bed fabrication methods. Use of the LIG in devices is performed very simply. This is showcased with high performance supercapacitors, fuel cell materials for oxygen reduction reactions, water splitting for both hydrogen and oxygen evolution reactions coming from the same plastic sheet, sensor devices, oil/water purification platforms, and finally applications in both passive and active biofilm inhibitors. So the ease of formation of LIG, its simple scale-up, and its utility for a range of applications highlights the easy transition of this substrate-bound graphene foam into commercial device platforms.

2.
Acc Chem Res ; 46(10): 2307-18, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23276286

RESUMO

Graphene's unique physical and electrical properties (high tensile strength, Young's modulus, electron mobility, and thermal conductivity) have led to its nickname of "super carbon." Graphene research involves the study of several different physical forms of the material: powders, flakes, ribbons, and sheets and others not yet named or imagined. Within those forms, graphene can include a single layer, two layers, or ≤10 sheets of sp² carbon atoms. The chemistry and applications available with graphene depend on both the physical form of the graphene and the number of layers in the material. Therefore the available permutations of graphene are numerous, and we will discuss a subset of this work, covering some of our research on the synthesis and use of many of the different physical and layered forms of graphene. Initially, we worked with commercially available graphite, with which we extended diazonium chemistry developed to functionalize single-walled carbon nanotubes to produce graphitic materials. These structures were soluble in common organic solvents and were better dispersed in composites. We developed an improved synthesis of graphene oxide (GO) and explored how the workup protocol for the synthesis of GO can change the electronic structure and chemical functionality of the GO product. We also developed a method to remove graphene layers one-by-one from flakes. These powders and sheets of GO can serve as fluid loss prevention additives in drilling fluids for the oil industry. Graphene nanoribbons (GNRs) combine small width with long length, producing valuable electronic and physical properties. We developed two complementary syntheses of GNRs from multiwalled carbon nanotubes: one simple oxidative method that produces GNRs with some defects and one reductive method that produces GNRs that are less defective and more electrically conductive. These GNRs can be used in low-loss, high permittivity composites, as conductive reinforcement coatings on Kevlar fibers and in the fabrication of large area transparent electrodes. Using solid carbon sources such as polymers, food, insects, and waste, we can grow monolayer and bilayer graphene directly on metal catalysts, and carbon-sources containing nitrogen can produce nitrogen-doped graphene. The resulting graphene can be transferred to other surfaces, such as metal grids, for potential use in transparent touch screens for applications in personal electronics and large area photovoltaic devices. Because the transfer of graphene from one surface to another can lead to defects, low yields, and higher costs, we have developed methods for growing graphene directly on the substrates of interest. We can also produce patterned graphene to make GNRs or graphane/graphene superlattices within a single sheet. These superlattices could have multiple functions for use in sensors and other devices. This Account only touches upon this burgeoning area of materials chemistry, and the field will continue to expand as researchers imagine new forms and applications of graphene.

3.
Adv Mater ; 31(1): e1803621, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30368919

RESUMO

Laser-induced graphene (LIG) is a 3D porous material prepared by direct laser writing with a CO2 laser on carbon materials in ambient atmosphere. This technique combines 3D graphene preparation and patterning into a single step without the need for wet chemical steps. Since its discovery in 2014, LIG has attracted broad research interest, with several papers being published per month using this approach. These serve to delineate the mechanism of the LIG-forming process and to showcase the translation into many application areas. Herein, the strategies that have been developed to synthesize LIG are summarized, including the control of LIG properties such as porosity, composition, and surface characteristics, and the advancement in methodology to convert diverse carbon precursors into LIG. Taking advantage of the LIG properties, the applications of LIG in broad fields, such as microfluidics, sensors, and electrocatalysts, are highlighted. Finally, future development in biodegradable and biocompatible materials is briefly discussed.

4.
ACS Nano ; 10(4): 4873-81, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27074626

RESUMO

This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale.

5.
Top Curr Chem ; 257: 33-62, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-22179334

RESUMO

Molecular wires are compounds that are proposed to be used in molecular electronic and optoelectronic devices to replace the metal and silicon-based wires in semiconductor devices. We review the field, including organic molecular wires such as oligo(2,5-thiophene ethynylene)s, oligo(1,4-phenylene ethynylene)s, oligo(1,4-phenylene vinylene)s, aromatic ladder oligomers, oligophenylenes, polyphenylenes, acetylene oligomers, carbon nanotubes, and organometallic molecular wires. We briefly review the measurement of conduction in molecular wires and conclude that fully conjugated organic aromatic molecular wires are the best candidates for introduction into new electronic devices as replacements for the Al or Cu wiring presently used in logic and memory devices.

6.
Adv Mater ; 24(36): 4924-55, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22903803

RESUMO

Recent research has focused upon the growth of the graphene, with a concentration on the synthesis of graphene and related materials using both solution processes and high temperature chemical vapor and solid growth methods. Protocols to prepare high aspect ratio graphene nanoribbons from multi-walled carbon nanotubes have been developed as well as techniques to grow high quality graphene for electronics and other applications where high quality is needed. Graphene materials have been manipulated and modified for use in applications such as transparent electrodes, field effect transistors, thin film transistors and energy storage devices. This review summarizes the development of graphene and related materials.


Assuntos
Grafite/química , Óxidos/química , Compostos de Diazônio/química , Eletrodos , Nanotubos/química , Transistores Eletrônicos
7.
Anal Chim Acta ; 568(1-2): 2-19, 2006 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-17761241

RESUMO

The analytical techniques used for the physical characterization of organic molecular electronic-based devices are surveyed and discussed. These protocols include methods that are used to probe molecular assemblies such as single wavelength ellipsometry, water contact angle goniometry, cyclic voltammetry, infrared spectroscopy, and X-ray photoelectron spectroscopy, and methods used to measure charge transport properties of devices such as scanning tunneling microscopy, and inelastic electron tunneling spectroscopy. Examples from our laboratory and the literature are given for each of these analytical techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA