Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 21(4): 100215, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189333

RESUMO

Syntrophus aciditrophicus is a model syntrophic bacterium that degrades fatty and aromatic acids into acetate, CO2, formate, and H2 that are utilized by methanogens and other hydrogen-consuming microbes. S. aciditrophicus benzoate degradation proceeds by a multistep pathway with many intermediate reactive acyl-coenzyme A species (RACS) that can potentially Nε-acylate lysine residues. Herein, we describe the identification and characterization of acyl-lysine modifications that correspond to RACS in the benzoate degradation pathway. The amounts of modified peptides are sufficient to analyze the post-translational modifications without antibody enrichment, enabling a range of acylations located, presumably, on the most extensively acylated proteins throughout the proteome to be studied. Seven types of acyl modifications were identified, six of which correspond directly to RACS that are intermediates in the benzoate degradation pathway including 3-hydroxypimeloylation, a modification first identified in this system. Indeed, benzoate-degrading enzymes are heavily represented among the acylated proteins. A total of 125 sites were identified in 60 proteins. Functional deacylase enzymes are present in the proteome, indicating a potential regulatory system/mechanism by which S. aciditrophicus modulates acylation. Uniquely, Nε-acyl-lysine RACS are highly abundant in these syntrophic bacteria, raising the compelling possibility that post-translational modifications modulate benzoate degradation in this and potentially other, syntrophic bacteria. Our results outline candidates for further study of how acylations impact syntrophic consortia.


Assuntos
Deltaproteobacteria , Proteoma , Bactérias/metabolismo , Benzoatos/metabolismo , Deltaproteobacteria/metabolismo , Lisina/metabolismo , Proteoma/metabolismo
2.
Infect Immun ; 87(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30420450

RESUMO

Staphylococcus aureus nitric oxide synthase (saNOS) is a major contributor to virulence, stress resistance, and physiology, yet the specific mechanism(s) by which saNOS intersects with other known regulatory circuits is largely unknown. The SrrAB two-component system, which modulates gene expression in response to the reduced state of respiratory menaquinones, is a positive regulator of nos expression. Several SrrAB-regulated genes were also previously shown to be induced in an aerobically respiring nos mutant, suggesting a potential interplay between saNOS and SrrAB. Therefore, a combination of genetic, molecular, and physiological approaches was employed to characterize a nos srrAB mutant, which had significant reductions in the maximum specific growth rate and oxygen consumption when cultured under conditions promoting aerobic respiration. The nos srrAB mutant secreted elevated lactate levels, correlating with the increased transcription of lactate dehydrogenases. Expression of nitrate and nitrite reductase genes was also significantly enhanced in the nos srrAB double mutant, and its aerobic growth defect could be partially rescued with supplementation with nitrate, nitrite, or ammonia. Furthermore, elevated ornithine and citrulline levels and highly upregulated expression of arginine deiminase genes were observed in the double mutant. These data suggest that a dual deficiency in saNOS and SrrAB limits S. aureus to fermentative metabolism, with a reliance on nitrate assimilation and the urea cycle to help fuel energy production. The nos, srrAB, and nos srrAB mutants showed comparable defects in endothelial intracellular survival, whereas the srrAB and nos srrAB mutants were highly attenuated during murine sepsis, suggesting that SrrAB-mediated metabolic versatility is dominant in vivo.


Assuntos
Proteínas de Bactérias , Óxido Nítrico Sintase/metabolismo , Proteínas Repressoras , Staphylococcus aureus , Virulência/fisiologia , Proteínas de Bactérias/genética , Células Cultivadas , Regulação Bacteriana da Expressão Gênica/fisiologia , Mutação , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética , Estresse Oxidativo/fisiologia , Proteínas Repressoras/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Transcrição Gênica , Virulência/genética
3.
Environ Microbiol ; 21(5): 1833-1846, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30895699

RESUMO

Syntrophy is essential for the efficient conversion of organic carbon to methane in natural and constructed environments, but little is known about the enzymes involved in syntrophic carbon and electron flow. Syntrophus aciditrophicus strain SB syntrophically degrades benzoate and cyclohexane-1-carboxylate and catalyses the novel synthesis of benzoate and cyclohexane-1-carboxylate from crotonate. We used proteomic, biochemical and metabolomic approaches to determine what enzymes are used for fatty, aromatic and alicyclic acid degradation versus for benzoate and cyclohexane-1-carboxylate synthesis. Enzymes involved in the metabolism of cyclohex-1,5-diene carboxyl-CoA to acetyl-CoA were in high abundance in S. aciditrophicus cells grown in pure culture on crotonate and in coculture with Methanospirillum hungatei on crotonate, benzoate or cyclohexane-1-carboxylate. Incorporation of 13 C-atoms from 1-[13 C]-acetate into crotonate, benzoate and cyclohexane-1-carboxylate during growth on these different substrates showed that the pathways are reversible. A protein conduit for syntrophic reverse electron transfer from acyl-CoA intermediates to formate was detected. Ligases and membrane-bound pyrophosphatases make pyrophosphate needed for the synthesis of ATP by an acetyl-CoA synthetase. Syntrophus aciditrophicus, thus, uses a core set of enzymes that operates close to thermodynamic equilibrium to conserve energy in a novel and highly efficient manner.


Assuntos
Ácidos/metabolismo , Proteínas de Bactérias/metabolismo , Deltaproteobacteria/metabolismo , Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Ácidos/química , Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Benzoatos/metabolismo , Ácidos Cicloexanocarboxílicos/metabolismo , Deltaproteobacteria/enzimologia , Deltaproteobacteria/genética , Transporte de Elétrons , Metano/metabolismo , Methanospirillum/metabolismo , Proteômica
4.
Mol Microbiol ; 105(1): 139-157, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28431199

RESUMO

Nitric oxide (NO) is generated from arginine and oxygen via NO synthase (NOS). Staphylococcus aureus NOS (saNOS) has previously been shown to affect virulence and resistance to exogenous oxidative stress, yet the exact mechanism is unknown. Herein, a previously undescribed role of saNOS in S. aureus aerobic physiology was reported. Specifically, aerobic S. aureus nos mutant cultures presented with elevated endogenous reactive oxygen species (ROS) and superoxide levels, as well as increased membrane potential, increased respiratory dehydrogenase activity and slightly elevated oxygen consumption. Elevated ROS levels in the nos mutant likely resulted from altered respiratory function, as inhibition of NADH dehydrogenase brought ROS levels back to wild-type levels. These results indicate that, in addition to its recently reported role in regulating the switch to nitrate-based respiration during low-oxygen growth, saNOS also plays a modulatory role during aerobic respiration. Multiple transcriptional changes were also observed in the nos mutant, including elevated expression of genes associated with oxidative/nitrosative stress, anaerobic respiration and lactate metabolism. Targeted metabolomics revealed decreased cellular lactate levels, and altered levels of TCA cycle intermediates, the latter of which may be related to decreased aconitase activity. Collectively, these findings demonstrate a key contribution of saNOS to S. aureus aerobic respiratory metabolism.


Assuntos
Óxido Nítrico Sintase/metabolismo , Staphylococcus aureus/metabolismo , Arginina/metabolismo , Fenômenos Fisiológicos Celulares/fisiologia , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Estresse Oxidativo , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/genética , Superóxidos/metabolismo , Virulência
5.
Methods Mol Biol ; 2341: 103-116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34264466

RESUMO

Developments in mass spectrometry have made it possible to identify individual biomolecules in complex samples. This has led to advances in the detection and quantification of both extracellular and intracellular metabolites, such as amino acids, organic acids, fatty acids, nucleotides, and CoA-esters from growth media and cellular extracts. However, the reproducibility of metabolite data can be problematic if the concentrations and/or stability of metabolites fluctuate during culture harvesting and processing. Herein we describe a standardized and efficient collection protocol and best practices for preservation and harvesting of Staphylococcus aureus cellular and supernatant samples to improve reproducibility, reliability, and consistency in mass-spectrometry-based metabolite data sets.


Assuntos
Metabolômica/métodos , Staphylococcus aureus/crescimento & desenvolvimento , Aerobiose , Guias como Assunto , Espectrometria de Massas , Staphylococcus aureus/metabolismo
6.
Microbiologyopen ; 9(11): e1124, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33306280

RESUMO

Bacterial nitric oxide (NO) synthases (bNOS) play diverse and important roles in microbial physiology, stress resistance, and virulence. Although bacterial and mammalian NOS enzymes have been well-characterized, comparatively little is known about the prevalence and function of NOS enzymes in Archaea. Analysis of archaeal genomes revealed that highly conserved bNOS homologs were restricted to members of the Halobacteria. Of these, Natronomonas pharaonis NOS (npNOS) was chosen for further characterization. NO production was confirmed in heterologously expressed His-tagged npNOS by coupling nitrite production from N-hydroxy-L-arginine in an H2O2-supported reaction. Additionally, the nos gene was successfully targeted and disrupted to create a Nmn. pharaonis nos mutant by adapting an established Natrialba magadii transformation protocol. Genome re-sequencing of this mutant revealed an additional frameshift in a putative cation-acetate symporter gene, which could contribute to altered acetate metabolism in the nos mutant. Inactivation of Nmn. pharaonis nos was also associated with several phenotypes congruent with bacterial nos mutants (altered growth, increased oxygen consumption, increased pigment, increased UV susceptibility), suggesting that NOS function may be conserved between bacteria and archaea. These studies are the first to describe genetic inactivation and characterization of a Nmn. pharaonis gene and provides enhanced tools for probing its physiology.


Assuntos
Genoma Arqueal/genética , Halobacteriaceae/enzimologia , Halobacteriaceae/genética , Óxido Nítrico Sintase/genética , Óxido Nítrico/biossíntese , Acetatos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico Sintase/análise , Oxirredução , Consumo de Oxigênio/fisiologia
7.
mBio ; 7(4)2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27531911

RESUMO

UNLABELLED: Syntrophus aciditrophicus is a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation by S. aciditrophicus However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome of S. aciditrophicus leaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show that S. aciditrophicus uses AMP-forming, acetyl-CoA synthetase (Acs1) for ATP synthesis from acetyl-CoA. acs1 mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, of S. aciditrophicus grown in pure culture and coculture. Cell extracts of S. aciditrophicus had low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified from S. aciditrophicus and recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4) in S. aciditrophicus cells support the operation of Acs1 in the acetate-forming direction. Thus, S. aciditrophicus has a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase. IMPORTANCE: Bacteria use two enzymes, phosphate acetyltransferase and acetate kinase, to make ATP from acetyl-CoA, while acetate-forming archaea use a single enzyme, an ADP-forming, acetyl-CoA synthetase, to synthesize ATP and acetate from acetyl-CoA. Syntrophus aciditrophicus apparently relies on a different approach to conserve energy during acetyl-CoA metabolism, as its genome does not have homologs to the genes for phosphate acetyltransferase and acetate kinase. Here, we show that S. aciditrophicus uses an alternative approach, an AMP-forming, acetyl-CoA synthetase, to make ATP from acetyl-CoA. AMP-forming, acetyl-CoA synthetases were previously thought to function only in the activation of acetate to acetyl-CoA.


Assuntos
Acetilcoenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , Coenzima A Ligases/metabolismo , Deltaproteobacteria/enzimologia , Deltaproteobacteria/metabolismo , Difosfatos/metabolismo , Acetatos/metabolismo , Perfilação da Expressão Gênica , Metaboloma , Proteoma/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA