Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(21): 7362-7375, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32299909

RESUMO

NAD+ is an essential metabolite participating in cellular biochemical processes and signaling. The regulation and interconnection among multiple NAD+ biosynthesis pathways are incompletely understood. Yeast (Saccharomyces cerevisiae) cells lacking the N-terminal (Nt) protein acetyltransferase complex NatB exhibit an approximate 50% reduction in NAD+ levels and aberrant metabolism of NAD+ precursors, changes that are associated with a decrease in nicotinamide mononucleotide adenylyltransferase (Nmnat) protein levels. Here, we show that this decrease in NAD+ and Nmnat protein levels is specifically due to the absence of Nt-acetylation of Nmnat (Nma1 and Nma2) proteins and not of other NatB substrates. Nt-acetylation critically regulates protein degradation by the N-end rule pathways, suggesting that the absence of Nt-acetylation may alter Nmnat protein stability. Interestingly, the rate of protein turnover (t½) of non-Nt-acetylated Nmnats did not significantly differ from those of Nt-acetylated Nmnats. Accordingly, deletion or depletion of the N-end rule pathway ubiquitin E3 ligases in NatB mutants did not restore NAD+ levels. Next, we examined whether the status of Nt-acetylation would affect the translation of Nmnats, finding that the absence of Nt-acetylation does not significantly alter the polysome formation rate on Nmnat mRNAs. However, we observed that NatB mutants have significantly reduced Nmnat protein maturation. Our findings indicate that the reduced Nmnat levels in NatB mutants are mainly due to inefficient protein maturation. Nmnat activities are essential for all NAD+ biosynthesis routes, and understanding the regulation of Nmnat protein homeostasis may improve our understanding of the molecular basis and regulation of NAD+ metabolism.


Assuntos
Acetiltransferases/metabolismo , NAD/biossíntese , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Biossíntese de Proteínas , Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Acetiltransferases/genética , NAD/genética , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
J Biol Chem ; 294(14): 5562-5575, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30760525

RESUMO

NADH (NAD+) is an essential metabolite involved in various cellular biochemical processes. The regulation of NAD+ metabolism is incompletely understood. Here, using budding yeast (Saccharomyces cerevisiae), we established an NAD+ intermediate-specific genetic system to identify factors that regulate the de novo branch of NAD+ biosynthesis. We found that a mutant strain (mac1Δ) lacking Mac1, a copper-sensing transcription factor that activates copper transport genes during copper deprivation, exhibits increases in quinolinic acid (QA) production and NAD+ levels. Similar phenotypes were also observed in the hst1Δ strain, deficient in the NAD+-dependent histone deacetylase Hst1, which inhibits de novo NAD+ synthesis by repressing BNA gene expression when NAD+ is abundant. Interestingly, the mac1Δ and hst1Δ mutants shared a similar NAD+ metabolism-related gene expression profile, and deleting either MAC1 or HST1 de-repressed the BNA genes. ChIP experiments with the BNA2 promoter indicated that Mac1 works with Hst1-containing repressor complexes to silence BNA expression. The connection of Mac1 and BNA expression suggested that copper stress affects de novo NAD+ synthesis, and we show that copper stress induces both BNA expression and QA production. Moreover, nicotinic acid inhibited de novo NAD+ synthesis through Hst1-mediated BNA repression, hindered the reuptake of extracellular QA, and thereby reduced de novo NAD+ synthesis. In summary, we have identified and characterized novel NAD+ homeostasis factors. These findings will expand our understanding of the molecular basis and regulation of NAD+ metabolism.


Assuntos
NAD/biossíntese , Niacina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cobre/metabolismo , Camundongos , NAD/genética , Niacina/genética , Proteínas Nucleares/genética , Ácido Quinolínico/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Fatores de Transcrição/genética
3.
J Biol Chem ; 293(8): 2927-2938, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29317496

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite participating in cellular redox chemistry and signaling, and the complex regulation of NAD+ metabolism is not yet fully understood. To investigate this, we established a NAD+-intermediate specific reporter system to identify factors required for salvage of metabolically linked nicotinamide (NAM) and nicotinic acid (NA). Mutants lacking components of the NatB complex, NAT3 and MDM20, appeared as hits in this screen. NatB is an Nα-terminal acetyltransferase responsible for acetylation of the N terminus of specific Met-retained peptides. In NatB mutants, increased NA/NAM levels were concomitant with decreased NAD+ We identified the vacuolar pool of nicotinamide riboside (NR) as the source of this increased NA/NAM. This NR pool is increased by nitrogen starvation, suggesting NAD+ and related metabolites may be trafficked to the vacuole for recycling. Supporting this, increased NA/NAM release in NatB mutants was abolished by deleting the autophagy protein ATG14 We next examined Tpm1 (tropomyosin), whose function is regulated by NatB-mediated acetylation, and Tpm1 overexpression (TPM1-oe) was shown to restore some NatB mutant defects. Interestingly, although TPM1-oe largely suppressed NA/NAM release in NatB mutants, it did not restore NAD+ levels. We showed that decreased nicotinamide mononucleotide adenylyltransferase (Nma1/Nma2) levels probably caused the NAD+ defects, and NMA1-oe was sufficient to restore NAD+ NatB-mediated N-terminal acetylation of Nma1 and Nma2 appears essential for maintaining NAD+ levels. In summary, our results support a connection between NatB-mediated protein acetylation and NAD+ homeostasis. Our findings may contribute to understanding the molecular basis and regulation of NAD+ metabolism.


Assuntos
Modelos Moleculares , Acetiltransferase N-Terminal B/metabolismo , NAD/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Acetiltransferases/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Deleção de Genes , Genes Reporter , Homeostase , Imunoprecipitação , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação , Acetiltransferase N-Terminal B/química , Acetiltransferase N-Terminal B/genética , Nicotinamida-Nucleotídeo Adenililtransferase/química , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Tropomiosina/genética , Tropomiosina/metabolismo
4.
Curr Genet ; 65(5): 1113-1119, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30993413

RESUMO

NAD+ (nicotinamide adenine dinucleotide) is an essential metabolite involved in a myriad of cellular processes. The NAD+ pool is maintained by three biosynthesis pathways, which are largely conserved from bacteria to human with some species-specific differences. Studying the regulation of NAD+ metabolism has been difficult due to the dynamic flexibility of NAD+ intermediates, the redundancy of biosynthesis pathways, and the complex interconnections among them. The budding yeast Saccharomyces cerevisiae provides an efficient genetic model for the isolation and study of factors that regulate specific NAD+ biosynthesis pathways. A recent study has uncovered a putative cross-regulation between the de novo NAD+ biosynthesis and copper homeostasis mediated by a copper-sensing transcription factor Mac1. Mac1 appears to work with the Hst1-Sum1-Rfm1 complex to repress the expression of de novo NAD+ biosynthesis genes. Here, we extend the discussions to include additional nutrient- and stress-sensing pathways that have been associated with the regulation of NAD+ homeostasis. NAD+ metabolism is an emerging therapeutic target for several human diseases. NAD+ preservation also helps ameliorate age-associated metabolic disorders. Recent findings in yeast contribute to the understanding of the molecular basis underlying the cross-regulation of NAD+ metabolism and other signaling pathways.


Assuntos
Metabolismo Energético , Redes e Vias Metabólicas , NAD/metabolismo , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Regulação Fúngica da Expressão Gênica , Homeostase , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA