Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 117(5): 057201, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27517790

RESUMO

We report a comparative study of magnetic field driven domain wall motion in thin films made of different magnetic materials for a wide range of field and temperature. The full thermally activated creep motion, observed below the depinning threshold, is shown to be described by a unique universal energy barrier function. Our findings should be relevant for other systems whose dynamics can be modeled by elastic interfaces moving on disordered energy landscapes.

2.
Phys Rev Lett ; 104(23): 237206, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20867268

RESUMO

We demonstrate experimentally dynamic interface binding in a system consisting of two coupled ferromagnetic layers. While domain walls in each layer have different velocity-field responses, for two broad ranges of the driving field H, walls in the two layers are bound and move at a common velocity. The bound states have their own velocity-field response and arise when the isolated wall velocities in each layer are close, a condition which always occurs as H→0. Several features of the bound states are reproduced using a one-dimensional model, illustrating their general nature.

3.
Nanotechnology ; 21(44): 445302, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20921591

RESUMO

Arrays of ultrathin Pt/Co(0.5 nm)/Pt nano-platelets with lateral sizes ranging from 30 nm to 1 µm have been patterned by focused ion beam (FIB) lithography under a weak Ga(+) ion fluence. From polar magneto-optical Kerr microscopy it is demonstrated that nano-platelets are ferromagnetic with perpendicular anisotropy down to a size of 50 nm. The irradiation process creates a magnetically soft ring at the nano-platelet periphery in which domain nucleation is initiated at a low field. The magnetization reversal in nano-platelets can be interpreted using a confined droplet model. All of the results prove that ultimate FIB patterning is suitable for preparing discrete magnetic recording media or small magnetic memory elements and nano-devices.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(4 Pt 1): 041402, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16711795

RESUMO

The magnetic-field-induced orientational order in the isotropic phase of colloidal gibbsite [Al(OH)3] platelets is studied by means of optical birefringence and small-angle x-ray scattering (SAXS) techniques. The suspensions display field-induced ordering at moderate field strengths (a few Tesla), which increases with increasing particle concentration. The gibbsite particles align their normals perpendicular to the magnetic field and hence possess a negative anisotropy of their diamagnetic susceptibility Delta(chi). The results can be described following a simple, Onsager-like approach. A simplified model is derived that allows one to obtain the orientational distribution function directly from the scattering data. However, it leads to an underestimate of the diamagnetic susceptibility anisotropy Delta(chi). This accounts for the difference between the Delta(chi) values provided by the two experimental techniques (SAXS and magneto-optics). The order of magnitude Delta(chi) approximately 10(-22) J/T(2) lies in between that of goethite suspensions and that of suspensions of organic particles.

5.
J Phys Condens Matter ; 24(2): 024212, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22173339

RESUMO

We detail measurements of field-driven expansion and zero-field relaxation of magnetic mirror domains in antiferromagnetically coupled perpendicularly magnetized ultrathin Co layers. The zero-field stability of aligned ('mirror') domains in such systems results from non-homogeneous dipolar stray fields which exist in the vicinity of the domain walls. During field-driven domain expansion, we evidence a separation of the domain walls which form the mirror domain boundary. However, the walls realign, thereby reforming a mirror domain, if their final separation is below a critical distance at the end of the field pulse. This critical distance marks the point at which the effective net interaction between the walls changes from attractive to repulsive.

6.
Nat Nanotechnol ; 7(10): 635-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22961306

RESUMO

Controlling the position of a magnetic domain wall with electric current may allow for new types of non-volatile memory and logic devices. To be practical, however, the threshold current density necessary for domain wall motion must be reduced below present values. Intrinsic pinning due to magnetic anisotropy, as recently observed in perpendicularly magnetized Co/Ni nanowires, has been shown to give rise to an intrinsic current threshold J(th)(0). Here, we show that domain wall motion can be induced at current densities 40% below J(th)(0) when an external magnetic field of the order of the domain wall pinning field is applied. We observe that the velocity of the domain wall motion is the vector sum of current- and field-induced velocities, and that the domain wall can be driven against the direction of a magnetic field as large as 2,000 Oe, even at currents below J(th)(0). We show that this counterintuitive phenomenon is triggered by Walker breakdown, and that the additive velocities provide a unique way of simultaneously determining the spin polarization of current and the Gilbert damping constant.

7.
Phys Rev Lett ; 99(9): 097203, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17931031

RESUMO

Magnetization reversal in a periodic magnetic field is studied on an ultrathin, ultrasoft ferromagnetic Pt/Co(0.5 nm)/Pt trilayer exhibiting weak random domain wall (DW) pinning. The DW motion is imaged by polar magneto-optic Kerr effect microscopy and monitored by superconducting quantum interference device susceptometry. In close agreement with model predictions, the complex linear ac susceptibility corroborates the dynamic DW modes segmental relaxation, creep, slide, and switching.

8.
Phys Rev Lett ; 99(21): 217208, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-18233251

RESUMO

We report on magnetic domain-wall velocity measurements in ultrathin Pt/Co(0.5-0.8 nm)/Pt films with perpendicular anisotropy over a large range of applied magnetic fields. The complete velocity-field characteristics are obtained, enabling an examination of the transition between thermally activated creep and viscous flow: motion regimes predicted from general theories for driven elastic interfaces in weakly disordered media. The dissipation limited flow regime is found to be consistent with precessional domain-wall motion, analysis of which yields values for the damping parameter, alpha.

9.
Phys Rev Lett ; 94(20): 207211, 2005 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-16090287

RESUMO

As a magnetic domain wall propagates under small fields through a random potential, it roughens as a result of weak collective pinning, known as creep. Using Kerr microscopy, we report experimental evidence of a surprising deroughening of wall pairs in the creep regime, in a 0.5 nm thick Co layer with perpendicular anisotropy. A bound state is found in cases where two rough domains nucleated far away from one another and first growing under the action of a magnetic field eventually do not merge. The two domains remain separated by a strip of unreversed magnetization, characterized by flat edges and stabilized by dipolar fields. A creep theory that includes dipolar interactions between domains successfully accounts for (i) the domain wall deroughening as the width of the strip decreases and (ii) the quasistatic and dynamic field dependence of the strip width s.

10.
Phys Rev Lett ; 92(10): 107202, 2004 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-15089237

RESUMO

The dynamics of a 1D domain wall (DW) in magnetic wires patterned in 2D ultrathin Co films is studied as a function of the wire width w0. The DW velocity v(H) is hugely reduced when w0 is decreased, and its field dependence is consistent with a creep process with a critical exponent micro=1/4. The effective critical field scales as (1/w0). Measurements of v(H) in wires with controlled artificial defects show that this arises from the edge roughness introduced by patterning. We show that the creep law can be renormalized by introducing a topologically induced critical field proportional to (1/w0).

11.
Phys Rev Lett ; 93(25): 257203, 2004 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-15697933

RESUMO

The reversal process of thin FePt/Pt(001) layers with perpendicular magnetization was observed by magnetic imaging techniques. Reversal occurs through domain wall propagation across a strongly disordered rectangular lattice of linear anisotropy defects. Micromagnetic simulations of domain wall pinning allowed deriving an analytical model of the reversal process unto percolation threshold. Quantitative agreement is found between the calculated and experimental fractal dimension of the reversed domain.

12.
Inorg Chem ; 40(18): 4633-40, 2001 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-11511209

RESUMO

To elucidate the relation between structural and magnetic properties, we have synthesized molecular materials having both Cotton effects and a ferromagnetic long range order. Such optically active 3D molecule-based magnets were rationally designed using the enantioselective template effect of optically active cations, namely Delta or Lambda [Ru(bpy)3, ClO4](+) or Delta or Lambda [Ru(bpy)3ppy](+) (bpy = bipyridine; ppy = phenylpyridine). Such cations are able to template the formation of optically active 3D anionic networks in which transition metal ions (Cr-Mn) and (Cr-Ni) are connected by oxalate ligands (ox). Following this strategy, we described the synthesis of ([Ru(bpy)3](2+), ClO4(-), [Mn(II)Cr(III)(ox)3](-))n and ([Ru(bpy)2ppy](+), [M(II)Cr(III)(ox)3](-))n with M(II) = Mn(II), Ni(II) in their optically active forms. In these 3D networks, all of the metallic centers have the same configuration, Delta or Lambda, as the template cation. We have determined the structure of ([DeltaRu(bpy)3][ClO4][DeltaMnDeltaCr(ox)3])n and ([LambdaRu(bpy)2ppy](+), [LambdaMn(II)LambdaCr(III)(ox)3](-))n by X-ray diffraction studies. These optically active networks show the Cotton effect and long-range ferromagnetic order at low temperatures. The magnetic circular dichroism of ([Ru(bpy)3](2+), ClO4(-), [Mn(II)Cr(III)(ox)3](-))n at 2 K is reported.

13.
Phys Rev Lett ; 88(12): 125507, 2002 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-11909477

RESUMO

Aqueous suspensions of goethite (alpha-FeOOH) nanorods form a mineral lyotropic nematic phase that aligns in a very low magnetic field (20 mT for samples 20 microm thick). The particles orient along the field direction at intensities smaller than 350 mT, but they reorient perpendicular to the field beyond 350 mT. This outstanding behavior is also observed in the isotropic phase which has a very strong magnetic-field induced birefringence that could be interesting for applications. We interpret these magnetic effects as resulting from a competition between a nanorod remanent magnetic moment and a negative anisotropy of its magnetic susceptibility.

14.
Eur Phys J E Soft Matter ; 13(3): 291-308, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15103523

RESUMO

Depending on volume fraction, aqueous suspensions of goethite (alpha-FeOOH) nanorods form a liquid-crystalline nematic phase (above 8.5%) or an isotropic liquid phase (below 5.5%). In this article, we investigate by small-angle X-ray scattering, magneto-optics, and magnetometry the influence of a magnetic field on the isotropic phase. After a brief description of the synthesis and characterisation of the goethite nanorod suspensions, we show that the disordered phase becomes very anisotropic under a magnetic field that aligns the particles. Moreover, we observe that the nanorods align parallel to a small field (< 350 mT), but realign perpendicular to a large enough field (> 350 mT). This phenomenon is interpreted as due to the competition between the influence of the nanorod permanent magnetic moment and a negative anisotropy of magnetic susceptibility. Our interpretation is supported by the behaviour of the suspensions in an alternating magnetic field. Finally, we propose a model that explains all experimental observations in a consistent way.

15.
J Microsc ; 194(Pt 2-3): 295-8, 1999.
Artigo em Inglês | MEDLINE | ID: mdl-11388254

RESUMO

We imaged magnetic domains in Pt/Co/Pt multilayers using an apertureless scanning near-field optical microscope operating in reflection mode. As the magneto-optical effects are weak for this kind of structure, a polarization modulation technique with a photoelastic modulator was used to reveal the contrast between magnetic domains. In the case of a Pt/Co/Pt trilayer structure, a strong improvement in lateral resolution is observed compared with far-field magneto-optical images and good sensitivity is achieved. In the case of a Pt/[Co/Pt]Pt multilayer structure, stripe domains of 200 nm width could be resolved, in good agreement with images obtained by magnetic force microscopy on the same structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA