Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Anal Chem ; 95(5): 2822-2831, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36715352

RESUMO

Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics usually combines hydrophilic interaction liquid chromatography (HILIC) and reversed-phase (RP) chromatography to cover a wide range of metabolomes, requiring both significant sample consumption and analysis time for separate workflows. We developed an integrated workflow enabling the coverage of both polar and nonpolar metabolites with only one injection of the sample for each ionization mode using heart-cutting trapping to combine HILIC and RP separations. This approach enables the trapping of some compounds eluted from the first chromatographic dimension for separation later in the second dimension. In our case, we applied heart-cutting to non-retained metabolites in the first dimension. For that purpose, two independent miniaturized one-dimensional HILIC and RP methods were developed by optimizing the chromatographic and ionization conditions using columns with an inner diameter of 1 mm. They were then merged into one two-dimensional micro LC-MS method by optimization of the trapping conditions. Equilibration of the HILIC column during elution on the RP column and vice versa reduced the overall analysis time, and the multidimensionality allows us to avoid signal measurements during the solvent front. To demonstrate the benefits of this approach to metabolomics, it was applied to the analysis of the human plasma standard reference material SRM 1950, enabling the detection of hundreds of metabolites without the significant loss of some of them while requiring an injection volume of only 0.5 µL.


Assuntos
Cromatografia de Fase Reversa , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos , Metabolômica/métodos , Metaboloma , Interações Hidrofóbicas e Hidrofílicas
2.
Metabolomics ; 17(1): 2, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33389209

RESUMO

INTRODUCTION: Because of its ease of collection, urine is one of the most commonly used matrices for metabolomics studies. However, unlike other biofluids, urine exhibits tremendous variability that can introduce confounding inconsistency during result interpretation. Despite many existing techniques to normalize urine samples, there is still no consensus on either which method is most appropriate or how to evaluate these methods. OBJECTIVES: To investigate the impact of several methods and combinations of methods conventionally used in urine metabolomics on the statistical discrimination of two groups in a simple metabolomics study. METHODS: We applied 14 different strategies of normalization to forty urine samples analysed by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). To evaluate the impact of these different strategies, we relied on the ability of each method to reduce confounding variability while retaining variability of interest, as well as the predictability of statistical models. RESULTS: Among all tested normalization methods, osmolality-based normalization gave the best results. Moreover, we demonstrated that normalization using a specific dilution prior to the analysis outperformed post-acquisition normalization. We also demonstrated that the combination of various normalization methods does not necessarily improve statistical discrimination. CONCLUSIONS: This study re-emphasized the importance of normalizing urine samples for metabolomics studies. In addition, it appeared that the choice of method had a significant impact on result quality. Consequently, we suggest osmolality-based normalization as the best method for normalizing urine samples. TRIAL REGISTRATION NUMBER: NCT03335644.


Assuntos
Interpretação Estatística de Dados , Metabolômica/métodos , Concentração Osmolar , Urinálise/métodos , Líquidos Corporais/metabolismo , Cromatografia Líquida , Humanos , Biópsia Líquida , Espectrometria de Massas , Metaboloma , Metabolômica/normas , Urinálise/normas
3.
Arch Toxicol ; 95(10): 3303-3322, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34459931

RESUMO

As a result of the cosmetics testing ban, safety evaluations of cosmetics ingredients must now be conducted using animal-free methods. A common approach is read across, which is mainly based on structural similarities but can also be conducted using biological endpoints. Here, metabolomics was used to assess biological effects to enable a read across between a candidate cosmetic ingredient, DIV665, only studied using in vitro assays, and a structurally similar reference compound, PA102, previously investigated using traditional in vivo toxicity methods. The (1) cutaneous distribution after topical application, (2) skin metabolism, (3) liver metabolism and (4) effect on the intracellular metabolomic profiles of in vitro skin and hepatic models, SkinEthic®RHE model and HepaRG® cells were investigated. The compounds exhibited similar skin penetration and skin and liver metabolism, with small differences attributed to their physicochemical properties. The effects of both compounds on the metabolome of RHE and HepaRG® cells were similarly small, both in terms of the metabolites modulated and the magnitude of changes. The patterns of metabolome changes did not fit with any known signature relating to a mode of action known to be linked to liver toxicity e.g. modification of the Krebs cycle, urea synthesis and lipid metabolism, were more reflective of transient adaptive responses. Overall, these studies indicate that PA102 is biologically similar to DIV665, allowing read across of safety endpoints, such as in vivo sub-chronic (but not reproduction toxicity) studies, for the former to be applied to DIV665. Based on this, in the absence of animal data (which is prohibited for new chemicals), it could be concluded that DIV665 applied according to the consumer topical use scenario, is similar to PA102, and is predicted to exhibit low local skin and systemic toxicity.


Assuntos
Cosméticos/toxicidade , Fígado/efeitos dos fármacos , Pele/efeitos dos fármacos , Animais , Linhagem Celular , Células Cultivadas , Qualidade de Produtos para o Consumidor , Ácidos Decanoicos/toxicidade , Feminino , Humanos , Fígado/metabolismo , Metabolômica/métodos , Pele/metabolismo , Suínos , Testes de Toxicidade
4.
Anal Chem ; 92(2): 1746-1754, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31854978

RESUMO

Among the numerous unknown metabolites representative of our exposure, focusing on toxic compounds should provide more relevant data to link exposure and health. For that purpose, we developed and applied a global method using data independent acquisition (DIA) in mass spectrometry to profile specifically electrophilic compounds originating metabolites. These compounds are most of the time toxic, due to their chemical reactivity toward nucleophilic sites present in biomacromolecules. The main line of cellular defense against these electrophilic molecules is conjugation to glutathione, then metabolization into mercapturic acid conjugates (MACs). Interestingly, MACs display a characteristic neutral loss in MS/MS experiments that makes it possible to detect all the metabolites displaying this characteristic loss, thanks to the DIA mode, and therefore to highlight the corresponding reactive metabolites. As a proof of concept, our workflow was applied to the toxicological issue of the oxidation of dietary polyunsaturated fatty acids, leading in particular to the formation of toxic alkenals, which lead to MACs upon glutathione conjugation and metabolization. By this way, dozens of MACs were detected and identified. Interestingly, multivariate statistical analyses carried out only on extracted HRMS signals of MACs yield a better characterization of the studied groups compared to results obtained from a classic untargeted metabolomics approach.


Assuntos
Acetilcisteína/metabolismo , Aldeídos/metabolismo , Acetilcisteína/análise , Acetilcisteína/urina , Aldeídos/química , Aldeídos/urina , Animais , Masculino , Metabolômica , Estrutura Molecular , Análise Multivariada , Ratos , Ratos Endogâmicos F344 , Espectrometria de Massas em Tandem
5.
Anal Chem ; 91(19): 12191-12202, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31464421

RESUMO

The secondary metabolome of Penicillium nordicum is poorly documented despite its frequent detection on contaminated food and its capacity to produce toxic metabolites such as ochratoxin A. To characterize metabolites produced by this fungi, we combined a full stable isotopes labeling with the dereplication of tandem mass spectrometry (MS/MS) data by molecular networking. First, the untargeted metabolomic analysis by high-resolution mass spectrometry of a double stable isotope labeling of P. nordicum enabled the specific detection of its metabolites and the unambiguous determination of their elemental composition. Analyses showed that infection of substrate by P. nordicum lead to the production of at least 92 metabolites and that 69 of them were completely unknown. Then, curated molecular networks of MS/MS data were generated with GNPS and MetGem, specifically on the features of interest, which allowed highlighting 13 fungisporin-related metabolites that had not previously been identified in this fungus and 8 that had never been observed in any fungus. The structures of the unknown compounds, namely, a native fungisporin and seven linear peptides, were characterized by tandem mass spectrometry experiments. The analysis of P. nordicum growing on its natural substrates, i.e. pork ham, turkey ham, and cheese, demonstrated that 10 of the known fungisporin-related metabolites and three of the new metabolites were also synthesized. Thus, the curation of data for molecular networking using a specific detection of metabolites of interest with stable isotopes labeling allowed the discovery of new metabolites produced by the food contaminant P. nordicum.


Assuntos
Penicillium/metabolismo , Espectrometria de Massas em Tandem/métodos , Isótopos de Carbono , Queijo/microbiologia , Microbiologia de Alimentos , Marcação por Isótopo/métodos , Estrutura Molecular , Isótopos de Nitrogênio , Carne de Porco/microbiologia , Metabolismo Secundário
6.
Toxicol Appl Pharmacol ; 329: 190-201, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28601433

RESUMO

In this study, a comprehensive characterization of xenobiotic metabolizing enzymes (XMEs) based on gene expression and enzyme functionality was made in a reconstructed skin epidermal model derived from the outer root sheath (ORS) of hair follicles (ORS-RHE). The ORS-RHE model XME gene profile was consistent with native human skin. Cytochromes P450 (CYPs) consistently reported to be detected in native human skin were also present at the gene level in the ORS-RHE model. The highest Phase I XME gene expression levels were observed for alcohol/aldehyde dehydrogenases and (carboxyl) esterases. The model was responsive to the CYP inducers, 3-methylcholanthrene (3-MC) and ß-naphthoflavone (ßNF) after topical and systemic applications, evident at the gene and enzyme activity level. Phase II XME levels were generally higher than those of Phase I XMEs, the highest levels were GSTs and transferases, including NAT1. The presence of functional CYPs, UGTs and SULTs was confirmed by incubating the models with 7-ethoxycoumarin, testosterone, benzo(a)pyrene and 3-MC, all of which were rapidly metabolized within 24h after topical application. The extent of metabolism was dependent on saturable and non-saturable metabolism by the XMEs and on the residence time within the model. In conclusion, the ORS-RHE model expresses a number of Phase I and II XMEs, some of which may be induced by AhR ligands. Functional XME activities were also demonstrated using systemic or topical application routes, supporting their use in cutaneous metabolism studies. Such a reproducible model will be of interest when evaluating the cutaneous metabolism and potential toxicity of innovative dermo-cosmetic ingredients.


Assuntos
Sistema Enzimático do Citocromo P-450/biossíntese , Folículo Piloso/enzimologia , Queratinócitos/enzimologia , Xenobióticos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Cultivadas , Indutores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Indução Enzimática , Glutationa Transferase/biossíntese , Glutationa Transferase/genética , Folículo Piloso/citologia , Folículo Piloso/efeitos dos fármacos , Humanos , Isoenzimas , Queratinócitos/efeitos dos fármacos , Cinética , Ligantes , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/metabolismo , Especificidade por Substrato , Sulfotransferases/biossíntese , Sulfotransferases/genética
7.
Bioinformatics ; 30(9): 1336-7, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24443383

RESUMO

We present ProbMetab, an R package that promotes substantial improvement in automatic probabilistic liquid chromatography-mass spectrometry-based metabolome annotation. The inference engine core is based on a Bayesian model implemented to (i) allow diverse source of experimental data and metadata to be systematically incorporated into the model with alternative ways to calculate the likelihood function and (ii) allow sensitive selection of biologically meaningful biochemical reaction databases as Dirichlet-categorical prior distribution. Additionally, to ensure result interpretation by system biologists, we display the annotation in a network where observed mass peaks are connected if their candidate metabolites are substrate/product of known biochemical reactions. This graph can be overlaid with other graph-based analysis, such as partial correlation networks, in a visualization scheme exported to Cytoscape, with web and stand-alone versions.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Automação Laboratorial , Teorema de Bayes , Metaboloma , Software
8.
Anal Bioanal Chem ; 406(4): 1149-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23892877

RESUMO

Human exposure to xenobiotics is usually estimated by indirect methods. Biological monitoring has emerged during the last decade to improve assessment of exposure. However, biomonitoring is still an analytical challenge, because the amounts of sample available are often very small yet analysis must be as thorough and sensitive as possible. The purpose of this work was to develop an untargeted "exposomics" approach by using ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS), which was applied to the characterization of pesticide metabolites in urine from pregnant women from a French epidemiological cohort. An upgradable list of pesticides commonly used on different crops, with their metabolites (more than 400 substances) was produced. Raw MS data were then processed to extract signals from these substances. Metabolites were identified by tandem mass spectrometry; putative identifications were validated by comparison with standards and metabolites generated by experiments on animals. Finally, signals of identified compounds were statistically analyzed by use of multivariate methods. This enabled discrimination of exposure groups, defined by indirect methods, on the basis of four metabolites from two fungicides (azoxystrobin, fenpropimorph) used in cereal production. This original approach applied to pesticide exposure can be extended to a variety of contaminant families for upstream evaluation of exposure from food and the environment.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Exposição Ambiental/análise , Espectrometria de Massas/métodos , Praguicidas/metabolismo , Praguicidas/urina , Adulto , Animais , Estudos de Coortes , Feminino , Humanos , Gravidez , Ratos , Ratos Wistar
9.
Talanta ; 276: 126230, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38762974

RESUMO

Colorectal cancer (CRC) is the third most common cancer in the world with a higher prevalence in the developed countries, mainly caused by environmental and lifestyle factors such as diet, particularly red meat consumption. The metabolic impact of high red meat consumption on the epithelial part of the colon was investigated using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MSI), to specifically analyze the epithelial substructure. Ten colons from rats fed for 100 days high red or white meat diet were subjected to untargeted MSI analyses using two spatial resolutions (100 µm and 10 µm) to evaluate metabolite changes in the epithelial part and to visualize the distribution of metabolites of interest within the epithelium crypts. Our results suggest a specific effect of red meat diet on the colonic epithelium metabolism, as evidenced by an increase of purine catabolism products or depletion in glutathione pool, reinforcing the hypothesis of increased oxidative stress with red meat diet. This study also highlighted cholesterol sulfate as another up-regulated metabolite, interestingly localized at the top of the crypts. Altogether, this study demonstrates the feasibility and the added value of using MSI to decipher the effect of high red meat diet on the colonic epithelium.


Assuntos
Colo , Metabolômica , Carne Vermelha , Animais , Colo/metabolismo , Carne Vermelha/análise , Ratos , Metabolômica/métodos , Masculino , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Metaboloma , Dieta
10.
Photochem Photobiol ; 100(2): 477-490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37485720

RESUMO

A reconstructed human epidermal model (RHE) colonized with human microbiota and sebum was developed to reproduce the complexity of the skin ecosystem in vitro. The RHE model was exposed to simulated solar radiation (SSR) with or without SPF50+ sunscreen (with UVB, UVA, long-UVA, and visible light protection). Structural identification of discriminant metabolites was acquired by nuclear magnetic resonance and metabolomic fingerprints were identified using reverse phase-ultra high-performance liquid chromatography-high resolution mass spectrometry, followed by pathway enrichment analysis. Over 50 metabolites were significantly altered by SSR (p < 0.05, log2 values), showing high skin oxidative stress (glutathione and purine pathways, urea cycle) and altered skin microbiota (branched-chain amino acid cycle and tryptophan pathway). 16S and internal transcribed spacer rRNA sequencing showed the relative abundance of various bacteria and fungi altered by SSR. This study identified highly accurate metabolomic fingerprints and metagenomic modifications of sun-exposed skin to help elucidate the interactions between the skin and its microbiota. Application of SPF50+ sunscreen protected the skin ecosystem model from the deleterious effects of SSR and preserved the physiological interactions within the skin ecosystem. These innovative technologies could thus be used to evaluate the effectiveness of sunscreen.


Assuntos
Multiômica , Protetores Solares , Humanos , Pele/efeitos da radiação , Protetores Solares/farmacologia , Protetores Solares/química , Raios Ultravioleta
11.
Environ Int ; 186: 108585, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521044

RESUMO

The chemical burden on the environment and human population is increasing. Consequently, regulatory risk assessment must keep pace to manage, reduce, and prevent adverse impacts on human and environmental health associated with hazardous chemicals. Surveillance of chemicals of known, emerging, or potential future concern, entering the environment-food-human continuum is needed to document the reality of risks posed by chemicals on ecosystem and human health from a one health perspective, feed into early warning systems and support public policies for exposure mitigation provisions and safe and sustainable by design strategies. The use of less-conventional sampling strategies and integration of full-scan, high-resolution mass spectrometry and effect-directed analysis in environmental and human monitoring programmes have the potential to enhance the screening and identification of a wider range of chemicals of known, emerging or potential future concern. Here, we outline the key needs and recommendations identified within the European Partnership for Assessment of Risks from Chemicals (PARC) project for leveraging these innovative methodologies to support the development of next-generation chemical risk assessment.


Assuntos
Exposição Ambiental , Monitoramento Ambiental , Humanos , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Monitoramento Ambiental/normas , Poluentes Ambientais/análise , Substâncias Perigosas/análise , Espectrometria de Massas/métodos , Medição de Risco/métodos
12.
Anal Chem ; 85(17): 8412-20, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23901908

RESUMO

Characterization of fungal secondary metabolomes has become a challenge due to the industrial applications of many of these molecules, and also due to the emergence of fungal threats to public health and natural ecosystems. Given that, the aim of the present study was to develop an untargeted method to analyze fungal secondary metabolomes by combining high-accuracy mass spectrometry and double isotopic labeling of fungal metabolomes. The strain NRRL 35693 of Aspergillus fumigatus , an important fungal pathogen, was grown on three wheat grain substrates: (1) naturally enriched grains (99% (12)C), (2) grains enriched 96.8% with (13)C, (3) grains enriched with 53.4% with (13)C and 96.8% with (15)N. Twenty-one secondary metabolites were unambiguously identified by high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) analysis. AntiBase 2012 was used to confirm the identity of these metabolites. Additionally, on the basis of tandem mass spectrometry (MS(n)) experiments, it was possible to identify for the first time the formula and the structure of fumigaclavine D, a new member of the fumigaclavines family. Post biosynthesis degradation of tryptoquivaline F by methanol was also identified during HPLC-HRMS analysis by the detection of a carbon atom of nonfungal origin. The interest of this method lies not only on the unambiguous determination of the exact chemical formulas of fungal secondary metabolites but also on the easy discrimination of nonfungal products. Validation of the method was thus successfully achieved in this study, and it can now be applied to other fungal metabolomes, offering great possibilities for the discovery of new drugs or toxins.


Assuntos
Aspergillus fumigatus/metabolismo , Marcação por Isótopo/métodos , Metaboloma/fisiologia , Espectrometria de Massas em Tandem/métodos , Triticum/metabolismo , Aspergillus fumigatus/química , Triticum/química
13.
Reprod Toxicol ; 118: 108380, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37003567

RESUMO

Ovarian cells are critical for reproduction and steroidogenesis, which are functions that can be impacted by exposure to xenobiotics. As in other extra-hepatic tissues, biotransformation events may occur at the ovarian level. Such metabolic events deserve interest, notably as they may modulate the overall exposure and toxicity of xenobiotics. In this study, the comparative metabolic fate of two bisphenols was investigated in ovarian cells. Bisphenol A (BPA), a model endocrine disruptor, and its major substitute bisphenol S (BPS) were selected. Bovine granulosa cells (primary cultures) and theca explants (ex vivo tissue) were exposed for 24 hr to tritium-labeled BPA, BPS and their respective glucuronides (i.e. their major circulating forms), at concentrations consistent with low-dose exposure scenarios. Mass balance studies were performed, followed by radio-HPLC profiling. The capability of both cell compartments to biotransform BPA and BPS into their respective sulfo-conjugates was demonstrated, with sulfation being the predominant metabolic route. In theca, there was a significantly higher persistence of BPA (compared to BPS) residues over 24 hr. Moreover, only theca explants were able to deconjugate inactive BPA-glucuronide and BPS-glucuronide back into their biologically active aglycone forms. Deconjugation rates were demonstrated to be higher for BPS-G than for BPA-G. These findings raise concerns about the in situ direct release of bisphenols at the level of the ovary and demonstrate the relevance of exploring the biotransformation of bisphenols and their circulating metabolites in different ovarian cells with specific metabolic capabilities. This work also provides essential knowledge for the improved risk assessment of bisphenols.


Assuntos
Glucuronídeos , Ovário , Feminino , Animais , Bovinos , Xenobióticos , Compostos Benzidrílicos/toxicidade
14.
Food Chem Toxicol ; 167: 113272, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35803361

RESUMO

The toxicity of mycotoxins containing bisfuranoid structures such as aflatoxin B1 (AFB1) depends largely on biotransformation processes. While the genotoxicity and mutagenicity of several bisfuranoid mycotoxins including AFB1 and sterigmatocystin have been linked to in vivo bioactivation of these molecules into reactive epoxide forms, the metabolites of genotoxic and mutagenic AFB1 precursor versicolorin A (VerA) have not yet been characterized. Because this molecule is not available commercially, our strategy was to produce a library of metabolites derived from the biotransformation of in-house purified VerA, following incubation with human liver S9 fractions, in presence of appropriate cofactors. The resulting chromatographic and mass-spectrometric data were used to identify VerA metabolites produced by intestinal cell lines as well as intestinal and liver tissues exposed ex vivo. In this way, we obtained a panel of metabolites suggesting the involvement of phase I (M + O) and phase II (glucuronide and sulfate metabolites) enzymes, the latter of which is implicated in the detoxification process. This first qualitative description of the metabolization products of VerA suggests bioactivation of the molecule into an epoxide form and provides qualitative analytic data to further conduct a precise metabolism study of VerA required for the risk assessment of this emerging mycotoxin.


Assuntos
Aflatoxina B1 , Aflatoxinas , Aflatoxina B1/metabolismo , Aflatoxina B1/toxicidade , Aflatoxinas/toxicidade , Antraquinonas , Dano ao DNA , Compostos de Epóxi , Humanos , Mutagênicos/toxicidade , Esterigmatocistina/toxicidade
15.
Curr Biol ; 18(11): 825-30, 2008 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-18514519

RESUMO

Most studies in evolution are centered on how homologous genes, structures, and/or processes appeared and diverged. Although historical homology is well defined as a concept, in practice its establishment can be problematic, especially for some morphological traits or developmental processes. Metamorphosis in chordates is such an enigmatic character. Defined as a spectacular postembryonic larva-to-adult transition, it shows a wide morphological diversity between the different chordate lineages, suggesting that it might have appeared several times independently. In vertebrates, metamorphosis is triggered by binding of the thyroid hormones (THs) T(4) and T(3) to thyroid-hormone receptors (TRs). Here we show that a TH derivative, triiodothyroacetic acid (TRIAC), induces metamorphosis in the cephalochordate amphioxus. The amphioxus TR (amphiTR) mediates spontaneous and TRIAC-induced metamorphosis because it strongly binds to TRIAC, and a specific TR antagonist, NH3, inhibits both spontaneous and TRIAC-induced metamorphosis. Moreover, as in amphibians, amphiTR expression levels increase around metamorphosis and are enhanced by THs. Therefore, TH-regulated metamorphosis, mediated by TR, is an ancestral feature of all chordates. This conservation of a regulatory network supports the homology of metamorphosis in the chordate lineage.


Assuntos
Evolução Biológica , Cordados não Vertebrados/crescimento & desenvolvimento , Metamorfose Biológica/fisiologia , Receptores dos Hormônios Tireóideos/fisiologia , Hormônios Tireóideos/fisiologia , Animais
16.
J Fungi (Basel) ; 7(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34947037

RESUMO

Dimethyl sulfoxide (DSMO) is a simple molecule widely used because of its great solvating ability, but this solvent also has little-known biological effects, especially on fungi. Aspergillus flavus is a notorious pathogenic fungus which may contaminate a large variety of crops worldwide by producing aflatoxins, endangering at the same time food safety and international trade. The aim of this study was to characterize the effect of DMSO on A. flavus including developmental parameters such as germination and sporulation, as well as its transcriptome profile using high-throughput RNA-sequencing assay and its impact on secondary metabolism (SM). After DMSO exposure, A. flavus displayed depigmented conidia in a dose-dependent manner. The four-day exposition of cultures to two doses of DMSO, chosen on the basis of depigmentation intensity (35 mM "low" and 282 mM "high"), led to no significant impact on fungal growth, germination or sporulation. However, transcriptomic data analysis showed that 4891 genes were differentially regulated in response to DMSO (46% of studied transcripts). A total of 4650 genes were specifically regulated in response to the highest dose of DMSO, while only 19 genes were modulated upon exposure to the lowest dose. Secondary metabolites clusters genes were widely affected by the DMSO, with 91% of clusters impacted at the highest dose. Among these, aflatoxins, cyclopiazonic acid and ustiloxin B clusters were totally under-expressed. The genes belonging to the AFB1 cluster were the most negatively modulated ones, the two doses leading to 63% and 100% inhibition of the AFB1 production, respectively. The SM analysis also showed the disappearance of ustiloxin B and a 10-fold reduction of cyclopiazonic acid level when A. flavus was treated by the higher DMSO dose. In conclusion, the present study showed that DMSO impacted widely A. flavus' transcriptome, including secondary metabolism gene clusters with the aflatoxins at the head of down-regulated ones. The solvent also inhibits conidial pigmentation, which could illustrate common regulatory mechanisms between aflatoxins and fungal pigment pathways. Because of its effect on major metabolites synthesis, DMSO should not be used as solvent especially in studies testing anti-aflatoxinogenic compounds.

17.
Anal Bioanal Chem ; 396(5): 1691-701, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20082235

RESUMO

An original method was developed to separate, identify and quantify the different benzo(a)pyrene (B(a)P) metabolites formed through oxidative and conjugative pathways. All B(a)P metabolites were separated by an improved high-performance liquid chromatography method, then detected and quantified relatively by online radioactivity detection. At the same time, metabolite structures were characterised by tandem mass spectrometry using two complementary ionisation modes: electrospray ionisation in the negative mode and atmospheric pressure chemical ionisation in the positive mode. This method was successfully applied to the analysis of B(a)P metabolites, produced by incubation of B(a)P with the ex vivo pig ear skin model. These include glucuronic acid and sulphate conjugates of B(a)P-OHs and B(a)P-diols, as well as direct phase I metabolites: B(a)P-tetrol, B(a)P-diones, B(a)P-catechols, B(a)P-diols and B(a)P-OHs.


Assuntos
Benzo(a)pireno/análise , Benzo(a)pireno/metabolismo , Modelos Animais , Pele/metabolismo , Suínos , Animais , Benzo(a)pireno/análogos & derivados , Cromatografia Líquida de Alta Pressão , Orelha Externa , Feminino , Ácido Glucurônico/análise , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Estrutura Molecular , Oxirredução , Estereoisomerismo , Sulfatos/análise , Sulfatos/química , Sulfatos/metabolismo , Espectrometria de Massas em Tandem
18.
Environ Int ; 144: 106010, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32745781

RESUMO

BACKGROUND: We recently demonstrated that chronic dietary exposure to a mixture of pesticides at low-doses induced sexually dimorphic obesogenic and diabetogenic effects in adult mice. Perinatal pesticide exposure may also be a factor in metabolic disease etiology. However, the long-term consequences of perinatal pesticide exposure remain controversial and largely unexplored. OBJECTIVES: Here we assessed how perinatal exposure to the same low-dose pesticide cocktail impacted metabolic homeostasis in adult mice. METHODS: Six pesticides (boscalid, captan, chlopyrifos, thiachloprid, thiophanate, and ziram) were incorporated in food pellets. During the gestation and lactation periods, female (F0) mice were fed either a pesticide-free or a pesticide-enriched diet at doses exposing them to the tolerable daily intake (TDI) level for each compound, using a 1:1 body weight scaling from humans to mice. All male and female offsprings (F1) were then fed the pesticide-free diet until 18 weeks of age, followed by challenge with a pesticide-free high-fat diet (HFD) for 6 weeks. Metabolic parameters, including body weight, food and water consumption, glucose tolerance, and urinary and fecal metabolomes, were assessed over time. At the end of the experiment, we evaluated energetic metabolism and microbiota activity using biochemical assays, gene expression profiling, and 1H NMR-based metabolomics in the liver, urine, and feces. RESULTS: Perinatal pesticide exposure did not affect body weight or energy homeostasis in 6- and 14-week-old mice. As expected, HFD increased body weight and induced metabolic disorders as compared to a low-fat diet. However, HFD-induced metabolic perturbations were similar between mice with and without perinatal pesticide exposure. Interestingly, perinatal pesticide exposure induced time-specific and sex-specific alterations in the urinary and fecal metabolomes of adult mice, suggesting long-lasting changes in gut microbiota. CONCLUSIONS: Perinatal pesticide exposure induced sustained sexually dimorphic perturbations of the urinary and fecal metabolic fingerprints, but did not significantly influence the development of HFD-induced metabolic diseases.


Assuntos
Microbioma Gastrointestinal , Praguicidas , Animais , Dieta Hiperlipídica/efeitos adversos , Fezes , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Praguicidas/toxicidade
19.
Eur J Mass Spectrom (Chichester) ; 25(3): 278-290, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30545248

RESUMO

The stratum corneum, the outermost layer of the epidermis, is the most important skin barrier against exogenous physical and chemical effects, in addition to protecting against dehydration. Ceramides are integral parts of the intercellular lipid lamellae of the stratum corneum and play an important role in the barrier function of mammalian skin. Ceramides are sphingolipids consisting of sphingoid bases linked to fatty acids by an amide bond. Typical sphingoid bases in the skin are composed of dihydrosphingosine, sphingosine, phytosphingosine, and 6-hydroxysphingosine, and the fatty acid acyl chains are composed of non-hydroxy fatty acid, α-hydroxy fatty acid, ω-hydroxy fatty acid, and esterified ω-hydroxy fatty acid. Analytical methods, such as gas chromatography/mass spectrometry, high performance thin layer chromatography with UV detection, and liquid chromatography/mass spectrometry, have been developed for the identification and quantification of ceramides in the stratum corneum. However, only a few publications relate to the mass fragmentation patterns specific to ceramide types to determine the structure of skin ceramides. Moreover, these studies provide very limited structural information and only for some ceramides. Therefore, the aim of our study was to develop a quick and easy method of quantification of ceramides, cholesterol, and free fatty acids by high performance thin layer chromatography with ultraviolet detection. High performance thin layer chromatography with ultraviolet detection was also coupled with mass spectrometry using negative ionization by electrospray and tandem mass spectrometry (MS/MS) for identification of ceramides' structure.


Assuntos
Cromatografia em Camada Fina/métodos , Epiderme/química , Lipídeos/química , Espectrometria de Massas em Tandem/métodos , Adulto , Ceramidas/química , Feminino , Humanos , Pessoa de Meia-Idade , Pele/química , Espectrometria de Massas por Ionização por Electrospray/métodos
20.
J Mass Spectrom ; 54(6): 567-582, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31083780

RESUMO

Nowadays, high-resolution mass spectrometry is widely used for metabolomic studies. Thanks to its high sensitivity, it enables the detection of a large range of metabolites. In metabolomics, the continuous quest for a metabolite identification as complete and accurate as possible has led during the last decade to an ever increasing development of public MS databases (including LC-MS data) concomitantly with bioinformatic tool expansion. To facilitate the annotation process of MS profiles obtained from biological samples, but also to ease data sharing, exchange, and exploitation, the standardization and harmonization of the way to describe and annotate mass spectra seemed crucial to us. Indeed, under electrospray (ESI) conditions, a single metabolite does not produce a unique ion corresponding to its protonated or deprotonated form but could lead to a complex mixture of signals. These MS signals result from the existence of different natural isotopologues of the same compound and also to the potential formation of adduct ions, homomultimeric and heteromultimeric ions, fragment ions resulting from "prompt" in-source dissociations. As a joint reflection process within the French Infrastructure for Metabolomics and Fluxomics (MetaboHUB) and with the purpose of developing a robust and exchangeable annotated MS database made from pure reference compounds (chemical standards) analysis, it appeared to us that giving the metabolomics community some clues to standardize and unambiguously annotate each MS feature was a prerequisite to data entry and further efficient querying of the mass spectral database. The use of a harmonized notation is also mandatory for interlaboratory MS data exchange. Additionally, thorough description of the variety of MS signals arising from the analysis of a unique metabolite might provide greater confidence on its annotation.


Assuntos
Curadoria de Dados/métodos , Bases de Dados Factuais/normas , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão/métodos , Biologia Computacional , Análise de Componente Principal , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA