Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Neurosci ; 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35970558

RESUMO

To what extent is the size of the blood-oxygen-level-dependent (BOLD) response influenced by factors other than neural activity? In a re-analysis of three neuroimaging datasets (male and female human participants), we find large systematic inhomogeneities in the BOLD response magnitude in primary visual cortex (V1): stimulus-evoked BOLD responses, expressed in units of percent signal change, are up to 50% larger along the representation of the horizontal meridian than the vertical meridian. To assess whether this surprising effect can be interpreted as differences in local neural activity, we quantified several factors that potentially contribute to the size of the BOLD response. We find relationships between BOLD response magnitude and cortical thickness, curvature, depth and macrovasculature. These relationships are consistently found across subjects and datasets and suggest that variation in BOLD response magnitudes across cortical locations reflects, in part, differences in anatomy and vascularization. To compensate for these factors, we implement a regression-based correction method and show that after correction, BOLD responses become more homogeneous across V1. The correction reduces the horizontal/vertical difference by about half, indicating that some of the difference is likely not due to neural activity differences. We conclude that interpretation of variation in BOLD response magnitude across cortical locations should consider the influence of the potential confounding factors of thickness, curvature, depth and vascularization.SIGNIFICANCE STATEMENTThe magnitude of the BOLD signal is often used as a surrogate of neural activity, but the exact factors that contribute to its strength have not been studied on a voxel-wise level. Here, we examined several anatomical and measurement-related factors to assess their relationship with BOLD signal magnitude. We find that BOLD magnitude correlates with cortical anatomy, depth and macrovasculature. To remove the contribution of these factors, we propose a simple, data-driven correction method that can be used in any functional magnetic resonance imaging (fMRI) experiment. After accounting for the confounding factors, BOLD magnitude becomes more spatially homogenous. Our correction method improves the ability to make more accurate inferences about local neural activity from fMRI data.

2.
Neuroimage ; 274: 120126, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37191655

RESUMO

Executive attention impairments are a persistent and debilitating consequence of traumatic brain injury (TBI). To make headway towards treating and predicting outcomes following heterogeneous TBI, cognitive impairment specific pathophysiology first needs to be characterized. In a prospective observational study, we measured EEG during the attention network test aimed at detecting alerting, orienting, executive attention and processing speed. The sample (N = 110) of subjects aged 18-86 included those with and without traumatic brain injury: n = 27, complicated mild TBI; n = 5, moderate TBI; n = 10, severe TBI; n = 63, non-brain-injured controls. Subjects with TBI had impairments in processing speed and executive attention. Electrophysiological markers of executive attention processing in the midline frontal regions reveal that, as a group, those with TBI and elderly non-brain-injured controls have reduced responses. We also note that those with TBI and elderly controls have responses that are similar for both low and high-demand trials. In subjects with moderate-severe TBI, reductions in frontal cortical activation and performance profiles are both similar to that of controls who are ∼4 to 7 years older. Our specific observations of frontal response reductions in subjects with TBI and in older adults is consistent with the suggested role of the anterior forebrain mesocircuit as underlying cognitive impairments. Our results provide novel correlative data linking specific pathophysiological mechanisms underlying domain-specific cognitive deficits following TBI and with normal aging. Collectively, our findings provide biomarkers that may serve to track therapeutic interventions and guide development of targeted therapeutics following brain injuries.


Assuntos
Lesões Encefálicas Traumáticas , Função Executiva , Envelhecimento Saudável , Idoso , Humanos , Envelhecimento , Biomarcadores , Lesões Encefálicas , Função Executiva/fisiologia , Testes Neuropsicológicos
3.
Hum Brain Mapp ; 44(9): 3541-3554, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37042411

RESUMO

Functional connectomes (FCs), represented by networks or graphs that summarize coactivation patterns between pairs of brain regions, have been related at a population level to age, sex, cognitive/behavioral scores, life experience, genetics, and disease/disorders. However, quantifying FC differences between individuals also provides a rich source of information with which to map to differences in those individuals' biology, experience, genetics or behavior. In this study, graph matching is used to create a novel inter-individual FC metric, called swap distance, that quantifies the distance between pairs of individuals' partial FCs, with a smaller swap distance indicating the individuals have more similar FC. We apply graph matching to align FCs between individuals from the the Human Connectome Project N = 997 and find that swap distance (i) increases with increasing familial distance, (ii) increases with subjects' ages, (iii) is smaller for pairs of females compared to pairs of males, and (iv) is larger for females with lower cognitive scores compared to females with larger cognitive scores. Regions that contributed most to individuals' swap distances were in higher-order networks, that is, default-mode and fronto-parietal, that underlie executive function and memory. These higher-order networks' regions also had swap frequencies that varied monotonically with familial relatedness of the individuals in question. We posit that the proposed graph matching technique provides a novel way to study inter-subject differences in FC and enables quantification of how FC may vary with age, relatedness, sex, and behavior.


Assuntos
Conectoma , Masculino , Feminino , Humanos , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Função Executiva , Cognição/fisiologia
4.
Nat Methods ; 17(10): 1033-1039, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32895538

RESUMO

The spatial resolution of functional magnetic resonance imaging (fMRI) is fundamentally limited by effects from large draining veins. Here we describe an analysis method that provides data-driven estimates of these effects in task-based fMRI. The method involves fitting a one-dimensional manifold that characterizes variation in response timecourses observed in a given dataset, and then using identified early and late timecourses as basis functions for decomposing responses into components related to the microvasculature (capillaries and small venules) and the macrovasculature (large veins), respectively. We show the removal of late components substantially reduces the superficial cortical depth bias of fMRI responses and helps eliminate artifacts in cortical activity maps. This method provides insight into the origins of the fMRI signal and can be used to improve the spatial accuracy of fMRI.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/irrigação sanguínea , Hemodinâmica/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Oxigênio/sangue , Adulto , Encéfalo/fisiologia , Feminino , Humanos , Masculino , Veias , Adulto Jovem
5.
Neuroimage ; 248: 118849, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34965456

RESUMO

Task-based and resting-state represent the two most common experimental paradigms of functional neuroimaging. While resting-state offers a flexible and scalable approach for characterizing brain function, task-based techniques provide superior localization. In this paper, we build on recent deep learning methods to create a model that predicts task-based contrast maps from resting-state fMRI scans. Specifically, we propose BrainSurfCNN, a surface-based fully-convolutional neural network model that works with a representation of the brain's cortical sheet. BrainSurfCNN achieves exceptional predictive accuracy on independent test data from the Human Connectome Project, which is on par with the repeat reliability of the measured subject-level contrast maps. Conversely, our analyses reveal that a previously published benchmark is no better than group-average contrast maps. Finally, we demonstrate that BrainSurfCNN can generalize remarkably well to novel domains with limited training data.


Assuntos
Mapeamento Encefálico/métodos , Conectoma/métodos , Emoções , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Conjuntos de Dados como Assunto , Humanos , Reprodutibilidade dos Testes , Descanso
6.
Neuroimage ; 247: 118812, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34936922

RESUMO

Functional MRI (fMRI) is a powerful technique that has allowed us to characterize visual cortex responses to stimuli, yet such experiments are by nature constructed based on a priori hypotheses, limited to the set of images presented to the individual while they are in the scanner, are subject to noise in the observed brain responses, and may vary widely across individuals. In this work, we propose a novel computational strategy, which we call NeuroGen, to overcome these limitations and develop a powerful tool for human vision neuroscience discovery. NeuroGen combines an fMRI-trained neural encoding model of human vision with a deep generative network to synthesize images predicted to achieve a target pattern of macro-scale brain activation. We demonstrate that the reduction of noise that the encoding model provides, coupled with the generative network's ability to produce images of high fidelity, results in a robust discovery architecture for visual neuroscience. By using only a small number of synthetic images created by NeuroGen, we demonstrate that we can detect and amplify differences in regional and individual human brain response patterns to visual stimuli. We then verify that these discoveries are reflected in the several thousand observed image responses measured with fMRI. We further demonstrate that NeuroGen can create synthetic images predicted to achieve regional response patterns not achievable by the best-matching natural images. The NeuroGen framework extends the utility of brain encoding models and opens up a new avenue for exploring, and possibly precisely controlling, the human visual system.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Conjuntos de Dados como Assunto , Humanos , Aumento da Imagem/métodos
7.
Hum Brain Mapp ; 43(3): 1087-1102, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34811849

RESUMO

A thorough understanding of sex-independent and sex-specific neurobiological features that underlie cognitive abilities in healthy individuals is essential for the study of neurological illnesses in which males and females differentially experience and exhibit cognitive impairment. Here, we evaluate sex-independent and sex-specific relationships between functional connectivity and individual cognitive abilities in 392 healthy young adults (196 males) from the Human Connectome Project. First, we establish that sex-independent models comparably predict crystallised abilities in males and females, but only successfully predict fluid abilities in males. Second, we demonstrate sex-specific models comparably predict crystallised abilities within and between sexes, and generally fail to predict fluid abilities in either sex. Third, we reveal that largely overlapping connections between visual, dorsal attention, ventral attention, and temporal parietal networks are associated with better performance on crystallised and fluid cognitive tests in males and females, while connections within visual, somatomotor, and temporal parietal networks are associated with poorer performance. Together, our findings suggest that shared neurobiological features of the functional connectome underlie crystallised and fluid abilities across the sexes.


Assuntos
Córtex Cerebral/fisiologia , Conectoma , Inteligência/fisiologia , Rede Nervosa/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Fatores Sexuais , Adulto Jovem
8.
Hum Brain Mapp ; 43(16): 5053-5065, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36102287

RESUMO

The symptoms of acute ischemic stroke can be attributed to disruption of the brain network architecture. Systemic thrombolysis is an effective treatment that preserves structural connectivity in the first days after the event. Its effect on the evolution of global network organisation is, however, not well understood. We present a secondary analysis of 269 patients from the randomized WAKE-UP trial, comparing 127 imaging-selected patients treated with alteplase with 142 controls who received placebo. We used indirect network mapping to quantify the impact of ischemic lesions on structural brain network organisation in terms of both global parameters of segregation and integration, and local disruption of individual connections. Network damage was estimated before randomization and again 22 to 36 h after administration of either alteplase or placebo. Evolution of structural network organisation was characterised by a loss in integration and gain in segregation, and this trajectory was attenuated by the administration of alteplase. Preserved brain network organization was associated with excellent functional outcome. Furthermore, the protective effect of alteplase was spatio-topologically nonuniform, concentrating on a subnetwork of high centrality supported in the salvageable white matter surrounding the ischemic cores. This interplay between the location of the lesion, the pathophysiology of the ischemic penumbra, and the spatial embedding of the brain network explains the observed potential of thrombolysis to attenuate topological network damage early after stroke. Our findings might, in the future, lead to new brain network-informed imaging biomarkers and improved prognostication in ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ativador de Plasminogênio Tecidual/uso terapêutico , Ativador de Plasminogênio Tecidual/efeitos adversos , Terapia Trombolítica/efeitos adversos , Terapia Trombolítica/métodos , Fibrinolíticos/uso terapêutico , Fibrinolíticos/efeitos adversos , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Resultado do Tratamento
9.
J Neurosci ; 40(15): 3008-3024, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32094202

RESUMO

Human ventral temporal cortex (VTC) is critical for visual recognition. It is thought that this ability is supported by large-scale patterns of activity across VTC that contain information about visual categories. However, it is unknown how category representations in VTC are organized at the submillimeter scale and across cortical depths. To fill this gap in knowledge, we measured BOLD responses in medial and lateral VTC to images spanning 10 categories from five domains (written characters, bodies, faces, places, and objects) at an ultra-high spatial resolution of 0.8 mm using 7 Tesla fMRI in both male and female participants. Representations in lateral VTC were organized most strongly at the general level of domains (e.g., places), whereas medial VTC was also organized at the level of specific categories (e.g., corridors and houses within the domain of places). In both lateral and medial VTC, domain-level and category-level structure decreased with cortical depth, and downsampling our data to standard resolution (2.4 mm) did not reverse differences in representations between lateral and medial VTC. The functional diversity of representations across VTC partitions may allow downstream regions to read out information in a flexible manner according to task demands. These results bridge an important gap between electrophysiological recordings in single neurons at the micron scale in nonhuman primates and standard-resolution fMRI in humans by elucidating distributed responses at the submillimeter scale with ultra-high-resolution fMRI in humans.SIGNIFICANCE STATEMENT Visual recognition is a fundamental ability supported by human ventral temporal cortex (VTC). However, the nature of fine-scale, submillimeter distributed representations in VTC is unknown. Using ultra-high-resolution fMRI of human VTC, we found differential distributed visual representations across lateral and medial VTC. Domain representations (e.g., faces, bodies, places, characters) were most salient in lateral VTC, whereas category representations (e.g., corridors/houses within the domain of places) were equally salient in medial VTC. These results bridge an important gap between electrophysiological recordings in single neurons at a micron scale and fMRI measurements at a millimeter scale.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Adulto , Simulação por Computador , Fenômenos Eletrofisiológicos , Reconhecimento Facial/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Modelos Lineares , Masculino , Estimulação Luminosa , Desempenho Psicomotor , Leitura , Reconhecimento Psicológico/fisiologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia
10.
Neuroimage ; 245: 118642, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34637901

RESUMO

Motor recovery following ischemic stroke is contingent on the ability of surviving brain networks to compensate for damaged tissue. In rodent models, sensory and motor cortical representations have been shown to remap onto intact tissue around the lesion site, but remapping to more distal sites (e.g. in the contralesional hemisphere) has also been observed. Resting state functional connectivity (FC) analysis has been employed to study compensatory network adaptations in humans, but mechanisms and time course of motor recovery are not well understood. Here, we examine longitudinal FC in 23 first-episode ischemic pontine stroke patients and utilize a graph matching approach to identify patterns of functional connectivity reorganization during recovery. We quantified functional reorganization between several intervals ranging from 1 week to 6 months following stroke, and demonstrated that the areas that undergo functional reorganization most frequently are in cerebellar/subcortical networks. Brain regions with more structural and functional connectome disruption due to the stroke also had more remapping over time. Finally, we show that functional reorganization is correlated with the extent of motor recovery in the early to late subacute phases, and furthermore, individuals with greater baseline motor impairment demonstrate more extensive early subacute functional reorganization (from one to two weeks post-stroke) and this reorganization correlates with better motor recovery at 6 months. Taken together, these results suggest that our graph matching approach can quantify recovery-relevant, whole-brain functional connectivity network reorganization after stroke.


Assuntos
Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiopatologia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade
11.
Hum Brain Mapp ; 42(10): 3102-3118, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33830577

RESUMO

White matter pathways between neurons facilitate neuronal coactivation patterns in the brain. Insight into how these structural and functional connections underlie complex cognitive functions provides an important foundation with which to delineate disease-related changes in cognitive functioning. Here, we integrate neuroimaging, connectomics, and machine learning approaches to explore how functional and structural brain connectivity relate to cognition. Specifically, we evaluate the extent to which functional and structural connectivity predict individual crystallised and fluid cognitive abilities in 415 unrelated healthy young adults (202 females) from the Human Connectome Project. We report three main findings. First, we demonstrate functional connectivity is more predictive of cognitive scores than structural connectivity, and, furthermore, integrating the two modalities does not increase explained variance. Second, we show the quality of cognitive prediction from connectome measures is influenced by the choice of grey matter parcellation, and, possibly, how that parcellation is derived. Third, we find that distinct functional and structural connections predict crystallised and fluid abilities. Taken together, our results suggest that functional and structural connectivity have unique relationships with crystallised and fluid cognition and, furthermore, studying both modalities provides a more comprehensive insight into the neural correlates of cognition.


Assuntos
Córtex Cerebral , Cognição/fisiologia , Conectoma , Inteligência/fisiologia , Rede Nervosa , Adulto , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Adulto Jovem
12.
Hum Brain Mapp ; 41(13): 3567-3579, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32627300

RESUMO

A thorough understanding of sex differences that exist in the brains of healthy individuals is crucial for the study of neurological illnesses that exhibit phenotypic differences between males and females. Here we evaluate sex differences in regional temporal dependence of resting-state brain activity in 195 adult male-female pairs strictly matched for total grey matter volume from the Human Connectome Project. We find that males have more persistent temporal dependence in regions within temporal, parietal, and occipital cortices. Machine learning algorithms trained on regional temporal dependence measures achieve sex classification accuracies up to 81%. Regions with the strongest feature importance in the sex classification task included cerebellum, amygdala, and frontal and occipital cortices. Secondarily, we show that even after strict matching of total gray matter volume, significant volumetric sex differences persist; males have larger absolute cerebella, hippocampi, parahippocampi, thalami, caudates, and amygdalae while females have larger absolute cingulates, precunei, and frontal and parietal cortices. Sex classification based on regional volume achieves accuracies up to 85%, highlighting the importance of strict volume-matching when studying brain-based sex differences. Differential patterns in regional temporal dependence between the sexes identifies a potential neurobiological substrate or environmental effect underlying sex differences in functional brain activation patterns.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Conectoma/métodos , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Caracteres Sexuais , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
13.
Neuroimage ; 199: 651-662, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31220576

RESUMO

The specificity and sensitivity of resting state functional MRI (rs-fMRI) measurements depend on preprocessing choices, such as the parcellation scheme used to define regions of interest (ROIs). In this study, we critically evaluate the effect of brain parcellations on machine learning models applied to rs-fMRI data. Our experiments reveal an intriguing trend: On average, models with stochastic parcellations consistently perform as well as models with widely used atlases at the same spatial scale. We thus propose an ensemble learning strategy to combine the predictions from models trained on connectivity data extracted using different (e.g., stochastic) parcellations. We further present an implementation of our ensemble learning strategy with a novel 3D Convolutional Neural Network (CNN) approach. The proposed CNN approach takes advantage of the full-resolution 3D spatial structure of rs-fMRI data and fits non-linear predictive models. Our ensemble CNN framework overcomes the limitations of traditional machine learning models for connectomes that often rely on region-based summary statistics and/or linear models. We showcase our approach on a classification (autism patients versus healthy controls) and a regression problem (prediction of subject's age), and report promising results.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Adolescente , Adulto , Atlas como Assunto , Encéfalo/fisiopatologia , Criança , Estudos de Coortes , Conectoma/normas , Humanos , Interpretação de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Masculino , Adulto Jovem
14.
Neuroimage ; 189: 847-869, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30731246

RESUMO

Advances in hardware, pulse sequences, and reconstruction techniques have made it possible to perform functional magnetic resonance imaging (fMRI) at sub-millimeter resolution while maintaining high spatial coverage and acceptable signal-to-noise ratio. Here, we examine whether sub-millimeter fMRI can be used as a routine method for obtaining accurate measurements of fine-scale local neural activity. We conducted fMRI in human visual cortex during a simple event-related visual experiment (7 T, gradient-echo EPI, 0.8-mm isotropic voxels, 2.2-s sampling rate, 84 slices), and developed analysis and visualization tools to assess the quality of the data. Our results fall along three lines of inquiry. First, we find that the acquired fMRI images, combined with appropriate surface-based processing, provide reliable and accurate measurements of fine-scale blood oxygenation level dependent (BOLD) activity patterns. Second, we show that the highly folded structure of cortex causes substantial biases on spatial resolution and data visualization. Third, we examine the well-recognized issue of venous contributions to fMRI signals. In a systematic assessment of large sections of cortex measured at a fine scale, we show that time-averaged T2*-weighted EPI intensity is a simple, robust marker of venous effects. These venous effects are unevenly distributed across cortex, are more pronounced in gyri and outer cortical depths, and are, to a certain degree, in consistent locations across subjects relative to cortical folding. Furthermore, we show that these venous effects are strongly correlated with BOLD responses evoked by the experiment. We conclude that sub-millimeter fMRI can provide robust information about fine-scale BOLD activity patterns, but special care must be exercised in visualizing and interpreting these patterns, especially with regards to the confounding influence of the brain's vasculature. To help translate these methodological findings to neuroscience research, we provide practical suggestions for both high-resolution and standard-resolution fMRI studies.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/anatomia & histologia , Córtex Visual/fisiologia , Adulto , Mapeamento Encefálico/normas , Feminino , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Córtex Visual/irrigação sanguínea , Córtex Visual/diagnóstico por imagem
15.
Hum Brain Mapp ; 40(15): 4441-4456, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31294921

RESUMO

Traumatic brain injury damages white matter pathways that connect brain regions, disrupting transmission of electrochemical signals and causing cognitive and emotional dysfunction. Connectome-level mechanisms for how the brain compensates for injury have not been fully characterized. Here, we collected serial MRI-based structural and functional connectome metrics and neuropsychological scores in 26 mild traumatic brain injury subjects (29.4 ± 8.0 years, 20 males) at 1 and 6 months postinjury. We quantified the relationship between functional and structural connectomes using network diffusion (ND) model propagation time, a measure that can be interpreted as how much of the structural connectome is being utilized for the spread of functional activation, as captured via the functional connectome. Overall cognition showed significant improvement from 1 to 6 months (t25 = -2.15, p = .04). None of the structural or functional global connectome metrics was significantly different between 1 and 6 months, or when compared to 34 age- and gender-matched controls (28.6 ± 8.8 years, 25 males). We predicted longitudinal changes in overall cognition from changes in global connectome measures using a partial least squares regression model (cross-validated R2 = .27). We observe that increased ND model propagation time, increased structural connectome segregation, and increased functional connectome integration were related to better cognitive recovery. We interpret these findings as suggesting two connectome-based postinjury recovery mechanisms: one of neuroplasticity that increases functional connectome integration and one of remote white matter degeneration that increases structural connectome segregation. We hypothesize that our inherently multimodal measure of ND model propagation time captures the interplay between these two mechanisms.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Transtornos Cognitivos/fisiopatologia , Conectoma , Ferimentos não Penetrantes/fisiopatologia , Adulto , Atenção , Lesões Encefálicas Traumáticas/psicologia , Estudos de Casos e Controles , Transtornos Cognitivos/etiologia , Convalescença , Imagem de Tensor de Difusão , Feminino , Seguimentos , Humanos , Deficiências da Aprendizagem/etiologia , Deficiências da Aprendizagem/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Modelos Neurológicos , Rede Nervosa/fisiopatologia , Testes Neuropsicológicos , Ferimentos não Penetrantes/psicologia , Adulto Jovem
16.
Neuroimage ; 183: 972-984, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30261308

RESUMO

The Human Connectome Projects in Development (HCP-D) and Aging (HCP-A) are two large-scale brain imaging studies that will extend the recently completed HCP Young-Adult (HCP-YA) project to nearly the full lifespan, collecting structural, resting-state fMRI, task-fMRI, diffusion, and perfusion MRI in participants from 5 to 100+ years of age. HCP-D is enrolling 1300+ healthy children, adolescents, and young adults (ages 5-21), and HCP-A is enrolling 1200+ healthy adults (ages 36-100+), with each study collecting longitudinal data in a subset of individuals at particular age ranges. The imaging protocols of the HCP-D and HCP-A studies are very similar, differing primarily in the selection of different task-fMRI paradigms. We strove to harmonize the imaging protocol to the greatest extent feasible with the completed HCP-YA (1200+ participants, aged 22-35), but some imaging-related changes were motivated or necessitated by hardware changes, the need to reduce the total amount of scanning per participant, and/or the additional challenges of working with young and elderly populations. Here, we provide an overview of the common HCP-D/A imaging protocol including data and rationales for protocol decisions and changes relative to HCP-YA. The result will be a large, rich, multi-modal, and freely available set of consistently acquired data for use by the scientific community to investigate and define normative developmental and aging related changes in the healthy human brain.


Assuntos
Envelhecimento , Encéfalo , Conectoma/métodos , Longevidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
J Vis ; 18(13): 23, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593068

RESUMO

About a quarter of human cerebral cortex is dedicated mainly to visual processing. The large-scale spatial organization of visual cortex can be measured with functional magnetic resonance imaging (fMRI) while subjects view spatially modulated visual stimuli, also known as "retinotopic mapping." One of the datasets collected by the Human Connectome Project involved ultrahigh-field (7 Tesla) fMRI retinotopic mapping in 181 healthy young adults (1.6-mm resolution), yielding the largest freely available collection of retinotopy data. Here, we describe the experimental paradigm and the results of model-based analysis of the fMRI data. These results provide estimates of population receptive field position and size. Our analyses include both results from individual subjects as well as results obtained by averaging fMRI time series across subjects at each cortical and subcortical location and then fitting models. Both the group-average and individual-subject results reveal robust signals across much of the brain, including occipital, temporal, parietal, and frontal cortex as well as subcortical areas. The group-average results agree well with previously published parcellations of visual areas. In addition, split-half analyses show strong within-subject reliability, further demonstrating the high quality of the data. We make publicly available the analysis results for individual subjects and the group average, as well as associated stimuli and analysis code. These resources provide an opportunity for studying fine-scale individual variability in cortical and subcortical organization and the properties of high-resolution fMRI. In addition, they provide a set of observations that can be compared with other Human Connectome Project measures acquired in these same participants.


Assuntos
Conectoma , Conjuntos de Dados como Assunto , Retina/fisiologia , Córtex Visual/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
18.
Neuroimage ; 152: 1-11, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28219776

RESUMO

Binocular rivalry is a phenomenon in which perception spontaneously shifts between two different images that are dichoptically presented to the viewer. By elucidating the cortical networks responsible for these stochastic fluctuations in perception, we can potentially learn much about the neural correlates of visual awareness. We obtained concurrent EEG-fMRI data for a group of 20 healthy human subjects during the continuous presentation of dichoptic visual stimuli. The two eyes' images were tagged with different temporal frequencies so that eye specific steady-state visual evoked potential (SSVEP) signals could be extracted from the EEG data for direct comparison with changes in fMRI BOLD activity associated with binocular rivalry. We additionally included a smooth replay condition that emulated the perceptual transitions experienced during binocular rivalry as a control stimulus. We evaluated a novel SSVEP-informed fMRI analysis in this study in order to delineate the temporal dynamics of rivalry-related BOLD activity from both an electrophysiological and behavioral perspective. In this manner, we assessed BOLD activity during rivalry that was directly correlated with peaks and crosses of the two rivaling, frequency-tagged SSVEP signals, for comparison with BOLD activity associated with subject reported perceptual transitions. Our findings point to a critical role of a right lateralized fronto-parietal network in the processing of bistable stimuli, given that BOLD activity in the right superior/inferior parietal lobules was significantly elevated throughout binocular rivalry and in particular during perceptual transitions, compared with the replay condition. Based on the SSVEP-informed analysis, rivalry was further associated with significantly enhanced BOLD suppression in the posterior mid-cingulate cortex during perceptual transitions, compared with SSVEP crosses. Overall, this work points to a careful interplay between early visual areas, the right posterior parietal cortex and the mid-cingulate cortex in mediating the spontaneous perceptual changes associated with binocular rivalry and has significant implications for future multimodal imaging studies of perception and awareness.


Assuntos
Giro do Cíngulo/fisiologia , Visão Binocular/fisiologia , Mapeamento Encefálico , Eletroencefalografia , Potenciais Evocados Visuais , Humanos , Imageamento por Ressonância Magnética , Estimulação Luminosa
19.
Neuroimage ; 154: 23-32, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27894889

RESUMO

Whole-brain functional magnetic resonance imaging (fMRI), in conjunction with multiband acceleration, has played an important role in mapping the functional connectivity throughout the entire brain with both high temporal and spatial resolution. Ultrahigh magnetic field strengths (7T and above) allow functional imaging with even higher functional contrast-to-noise ratios for improved spatial resolution and specificity compared to traditional field strengths (1.5T and 3T). High-resolution 7T fMRI, however, has primarily been constrained to smaller brain regions given the amount of time it takes to acquire the number of slices necessary for high resolution whole brain imaging. Here we evaluate a range of whole-brain high-resolution resting state fMRI protocols (0.9, 1.25, 1.5, 1.6 and 2mm isotropic voxels) at 7T, obtained with both in-plane and slice acceleration parallel imaging techniques to maintain the temporal resolution and brain coverage typically acquired at 3T. Using the processing pipeline developed by the Human Connectome Project, we demonstrate that high resolution images acquired at 7T provide increased functional contrast to noise ratios with significantly less partial volume effects and more distinct spatial features, potentially allowing for robust individual subject parcellations and descriptions of fine-scaled patterns, such as visuotopic organization.


Assuntos
Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos
20.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659856

RESUMO

Brain connectivity can be estimated in many ways, depending on modality and processing strategy. Here we present the Krakencoder, a joint connectome mapping tool that simultaneously, bidirectionally translates between structural (SC) and functional connectivity (FC), and across different atlases and processing choices via a common latent representation. These mappings demonstrate unprecedented accuracy and individual-level identifiability; the mapping between SC and FC has identifiability 42-54% higher than existing models. The Krakencoder combines all connectome flavors via a shared low-dimensional latent space. This "fusion" representation i) better reflects familial relatedness, ii) preserves age- and sex-relevant information and iii) enhances cognition-relevant information. The Krakencoder can be applied without retraining to new, out-of-age-distribution data while still preserving inter-individual differences in the connectome predictions and familial relationships in the latent representations. The Krakencoder is a significant leap forward in capturing the relationship between multi-modal brain connectomes in an individualized, behaviorally- and demographically-relevant way.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA