Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1865(6): 920-931, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29621572

RESUMO

IGF1R is a ubiquitous receptor tyrosine kinase that plays critical roles in cell proliferation, growth and survival. Clinical studies have demonstrated upregulation of IGF1R mediated signaling in a number of malignancies including colon, breast, and lung cancers. Overexpression of the IGF1R in these malignancies is associated with a poor prognosis and overall survival. IGF1R specific kinase inhibitors have failed in multiple clinical trials partly because of the complex nature of IGF1R signaling. Thus identifying new binding partners and allosteric sites on IGF1R are emerging areas of research. More recently, IGF1R has been shown to translocate into the nucleus and perform many functions. In this study, we generated a library of IGF1R deletion and point mutants to examine IGF1R subcellular localization and activation of downstream signaling pathways. We show that the nuclear localization of IGF1R is primarily defined by its cytoplasmic domain. We identified a cross-talk between IGF1R and Wnt/ß-catenin signaling pathways and showed, for the first time, that IGF1R is associated with upregulation of TCF-mediated ß-catenin transcriptional activity. Using loss-of-function mutants, deletion analysis and IGF1R specific inhibitor(s), we show that cytoplasmic and nuclear activities are two independent functions of IGF1R. Furthermore, we identified a unique loss-of-function mutation in IGF1R. This unique loss-of-function mutant retains only nuclear functions and sits in a pocket, outside ATP and substrate binding region, that is suited for designing allosteric inhibitors of IGF1R.


Assuntos
Mutação com Perda de Função , Receptores de Somatomedina , Regulação para Cima/fisiologia , Via de Sinalização Wnt/fisiologia , Células HEK293 , Células Hep G2 , Humanos , Domínios Proteicos , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Receptores de Somatomedina/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
2.
Biochim Biophys Acta ; 1863(9): 2345-57, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27368802

RESUMO

ß-Catenin, the central molecule of canonical Wnt signaling pathway, has multiple binding partners and performs many roles in the cell. Apart from being a transcriptional activator, ß-catenin acts as a crucial effector component of cadherin/catenin complex to physically interact with actin cytoskeleton along with α-catenin and E-cadherin for regulating cell-cell adhesion. Here, we have generated a library of ß-catenin point and deletion mutants to delineate regions within ß-catenin that are important for α-catenin-ß-catenin interaction, nuclear localization, and transcriptional activity of ß-catenin. We observed a unique mechanism for nuclear localization of ß-catenin and its mutants and show that N-terminal exon-3 region and C-terminal domain of ß-catenin are critical for this activity of ß-catenin. Furthermore, we show HepG2 cells have high ß-catenin mediated transcriptional activity due to the presence of an interstitial deletion at the N-terminal region of ß-catenin. Due to this deletion mutant (hereupon called TM), GSK3ß and HDAC inhibitors failed to show any impact whereas curcumin significantly inhibited ß-catenin mediated transcriptional activity reiterating that TM is primarily responsible for the high transcriptional activity of HepG2 cells. Moreover, we show the recombinant TM does not physically interact with α-catenin, localizes predominantly in the nucleus, and has nearly two-fold higher transcriptional activity than the wildtype ß-catenin.


Assuntos
Transcrição Gênica , beta Catenina/química , beta Catenina/metabolismo , Adesão Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Simulação por Computador , Curcumina/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Deleção de Sequência , Relação Estrutura-Atividade , Frações Subcelulares/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , alfa Catenina/metabolismo
3.
J Cell Biochem ; 117(12): 2864-2874, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27167447

RESUMO

Cancer therapeutics is a hot subject and PI3K class 1A isoforms (p110α and p110ß) are pursued as major targets. Genetic analysis, biochemical approaches, and structural studies have demonstrated crucial roles for these isoforms in several physiological processes. p110α is critical for insulin signaling, whereas p110ß is essential for the growth and differs from p110α in many ways. Here, we have generated GFP-fusion clones of wildtype and mutant version of p110α and p110ß and expressed them in HEK293 and cancer cells to examine their subcellular localization and their impact on downstream signaling. In HEK293 cells, p110ß GFP-fusion protein is translocated into the nucleus, whereas p110α-GFP stays exclusively in the cytoplasm. This study demonstrates that p110α and p110ß oncogenecity, kinase activity, and interaction with p85 regulatory subunit does not have any impact on their subcellular localization. PI3K pathway specific inhibitor, LY294002, abrogated PI3K signaling by reducing pAkt levels, however, the subcellular localization of p110α and p110ß remained unchanged. Furthermore, we analyzed the expression of recombinant p110α and p110ß in a panel of human cancer cells and observed remarkable differences in their expression levels. The differential expression of recombinant p110α and p110ß was observed to be mainly regulated by the endogenous levels of pAkt. Unlike in HEK293, p110α showed nuclear localization in cancer cells in a similar fashion to p110ß. Moreover, we observed the PI3K signaling activities in low pAkt expressing cells are mediated by PDK1 and S6K proteins. Finally, p110α and p110ß were seen to play an essential role in promoting the cell cycle progression in MCF-7 and HCT-116 cells. J. Cell. Biochem. 117: 2864-2874, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Transformação Celular Neoplásica/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Neoplasias/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Apoptose , Western Blotting , Ciclo Celular , Proliferação de Células , Transformação Celular Neoplásica/patologia , Células Cultivadas , Células HEK293 , Humanos , Neoplasias/patologia , Fosforilação , Isoformas de Proteínas , Transdução de Sinais
4.
PLoS One ; 7(9): e44039, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22962598

RESUMO

BACKGROUND: Withaferin A, which is a naturally derived steroidal lactone, has been found to prevent angiogenesis and metastasis in diverse tumor models. It has also been recognized by different groups for prominent anti-carcinogenic roles. However, in spite of these studies on withanolides, their detailed anti-metastatic mechanism of action remained unknown. The current study has poised to address the machinery involved in invasion regulation by stable derivative of Withaferin A, 3-azido Withaferin A (3-azidoWA) in human cervical HeLa and prostate PC-3 cells. METHODS AND PRINCIPAL FINDINGS: Sub-toxic concentration of 3-azidowithaferin A (3-azido WA) inhibited cancer cell motility and invasion in wound healing and Boyden chamber invasion by suppressing MMP-2 activity in gelatin zymography and its expression has proved to be a major obstacle in chemo-sensitivity. We have uncovered a novel mechanism of 3-azidoWA induced extracellular pro-apoptotic candidate tumor suppressor Par-4 protein stimulation in conditioned media and also noticed a concomitant marked reduction in pAkt and pERK signaling by immunoblot analysis. Furthermore, our zymography results suggest 3-azidoWA induced MMP-2 inhibition was mediated through secretory Par-4. The inhibition of apoptosis by 3-azidoWA could not restore MMP-2 gelatinase activity. In addition to this, our in vivo animal experiments data showed 3-azidoWA abrogated neovascularisation in dose dependent manner in mouse Matrigel plug assay. CONCLUSION/SIGNIFICANCE: For this report, we found that 3-azidoWA suppressed motility and invasion of HeLa and PC-3 cells in MMP-2 dependent manner. Our in vitro result strongly suggests that sub-toxic doses of 3-azidoWA enhanced the secretion of extracellular Par-4 that abolished secretory MMP-2 expression and activity. Depletion of secretory Par-4 restored MMP-2 expression and invasion capability of HeLa and PC-3 cells. Further, our findings implied that 3-azidoWA attenuated internal phospho-ERK and phospho-Akt expression in a dose dependent manner might play a key role in inhibition of mouse angiogenesis by 3-azidoWA.


Assuntos
Antineoplásicos/farmacologia , Azidas/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Invasividade Neoplásica/prevenção & controle , Neovascularização Patológica/prevenção & controle , Receptores de Trombina/metabolismo , Vitanolídeos/farmacologia , Animais , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Azidas/síntese química , Bioensaio , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Colágeno , Combinação de Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Laminina , Metaloproteinase 2 da Matriz/genética , Inibidores de Metaloproteinases de Matriz/síntese química , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteoglicanas , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Trombina/antagonistas & inibidores , Receptores de Trombina/genética , Transdução de Sinais , Vitanolídeos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA