Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(1): e2215170120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574689

RESUMO

Kinesin motor proteins perform several essential cellular functions powered by the adenosine triphosphate (ATP) hydrolysis reaction. Several single-point mutations in the kinesin motor protein KIF5A have been implicated to hereditary spastic paraplegia disease (HSP), a lethal neurodegenerative disease in humans. In earlier studies, we have shown that a series of HSP-related mutations can impair the kinesin's long-distance displacement or processivity by modulating the order-disorder transition of the linker connecting the heads to the coiled coil. On the other hand, the reduction of kinesin's ATP hydrolysis reaction rate by a distal asparagine-to-serine mutation is also known to cause HSP disease. However, the molecular mechanism of the ATP hydrolysis reaction in kinesin by this distal mutation is still not fully understood. Using classical molecular dynamics simulations combined with quantum mechanics/molecular mechanics calculations, the pre-organization geometry required for optimal hydrolysis in kinesin motor bound to α/ß-tubulin is determined. This optimal geometry has only a single salt-bridge (of the possible two) between Arg203-Glu236, putting a reactive water molecule at a perfect position for hydrolysis. Such geometry is also needed to create the appropriate configuration for proton translocation during ATP hydrolysis. The distal asparagine-to-serine mutation is found to disrupt this optimal geometry. Therefore, the current study along with our previous one demonstrates how two different effects on kinesin dynamics (processivity and ATP hydrolysis), caused by a different set of genotypes, can give rise to the same phenotype leading to HSP disease.


Assuntos
Doenças Neurodegenerativas , Paraplegia Espástica Hereditária , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Trifosfato de Adenosina/metabolismo , Hidrólise , Paraplegia Espástica Hereditária/genética , Doenças Neurodegenerativas/metabolismo , Asparagina/metabolismo , Mutação , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo
2.
Phys Chem Chem Phys ; 26(31): 21249-21259, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39076021

RESUMO

While allosteric signal transduction is crucial for protein signaling and regulation, the dynamic process of allosteric communication remains poorly understood. The third PDZ domain (PDZ stands for the common structural domain shared by the postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (DlgA), and zonula occludens-1 protein (ZO-1)) serves as a classic example of a single-domain allosteric protein, demonstrating a long-range coupling between the C-terminal α helix (known as the α3 helix) and ligand binding. A molecular level understanding of how the α3 helix modulates the ligand binding affinity of the PDZ3 domain is still lacking. In this study, extensive molecular dynamics simulations corroborated with principal component analysis (PCA), ligand binding free energy calculations, energetic frustration analysis and Markov state model analysis are employed to uncover such molecular details. We demonstrate the definite presence of a binding competent closed-like state in the conformational landscape of wild-type PDZ3. The population modulations of this closed state and other binding incompetent states in the landscape due to α3-truncation/mutation of PDZ3 are explored. A correlation between the closed state population and calculated binding free energy is established, which supports the conformation selection mechanism. Covariance analysis identified the presence of correlated motion between two distant loops (ß1-ß2 and ß2-ß3) in the wild-type PDZ3 system, which weakened due to truncation/mutation in the distant α3 helix. It has also been observed that whenever the α3 helix was perturbed, the ß2-ß3 loop got further away from the binding groove and it is found to be correlated with the binding free energy values. Energetic frustration analysis of the PDZ3 domain also showed that the ß2-ß3 loop is highly frustrated. Finally, MSM analysis revealed a relevant timescale (closed to open state transition), which is similar to the observed experimental signal transduction timescale for the system. These observations led to the conclusion that the distantly located α3 helix plays a pivotal role in regulating the conformational landscape of the PDZ3 domain, determining the ligand binding affinity and resulting in allosteric behavior of the domain.


Assuntos
Simulação de Dinâmica Molecular , Domínios PDZ , Regulação Alostérica , Ligação Proteica , Termodinâmica , Análise de Componente Principal , Ligantes , Conformação Proteica
3.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495322

RESUMO

Propofol is a widely used general anesthetic to induce and maintain anesthesia, and its effects are thought to occur through impact on the ligand-gated channels including the GABAA receptor. Propofol also interacts with a large number of proteins including molecular motors and inhibits kinesin processivity, resulting in significant decrease in the run length for conventional kinesin-1 and kinesin-2. However, the molecular mechanism by which propofol achieves this outcome is not known. The structural transition in the kinesin neck-linker region is crucial for its processivity. In this study, we analyzed the effect of propofol and its fluorine derivative (fropofol) on the transition in the neck-linker region of kinesin. Propofol binds at two crucial surfaces in the leading head: one at the microtubule-binding interface and the other in the neck-linker region. We observed in both the cases the order-disorder transition of the neck-linker was disrupted and kinesin lost its signal for forward movement. In contrast, there was not an effect on the neck-linker transition with propofol binding at the trailing head. Free-energy calculations show that propofol at the microtubule-binding surface significantly reduces the microtubule-binding affinity of the kinesin head. While propofol makes pi-pi stacking and H-bond interactions with the propofol binding cavity, fropofol is unable to make a suitable interaction at this binding surface. Therefore, the binding affinity of fropofol is much lower compared to propofol. Hence, this study provides a mechanism by which propofol disrupts kinesin processivity and identifies transitions in the ATPase stepping cycle likely affected.


Assuntos
Cinesinas/metabolismo , Propofol/farmacologia , Sítios de Ligação , Cinesinas/química , Mutação/genética , Propofol/análogos & derivados , Domínios Proteicos
4.
Angew Chem Int Ed Engl ; 62(7): e202216447, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36479962

RESUMO

Supramolecular assemblies such as tubules/helix/double helix/helical tape etc. are usually submicron objects preventing direct observation under optical microscope. Chiral-pure form of these assemblies is important for potential applications. Herein, we report a rare phenomenon wherein a DMSO gel of a simple terpyridine derivative [(4-CNPhe)4PyTerp] produced macroscopic helical morphologies (µm length scale) which could be observed under optical microscope, formation of which could be monitored by optical videography, stable enough to withstand acidic vapour, robust enough to display reversible gel↔sol in response to acidic and ammonia vapour and sturdy enough to be maneuvered with a needle. These properties appeared to be unique to the title compound as the other related derivatives failed to display such assembly structures. SXRD and MD simulation studies suggested that weak interactions (π-π stacking) played a crucial role in the self-assembly process.

5.
Chemistry ; 28(39): e202201082, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35475531

RESUMO

This article reports supramolecular polymerization of two bis-amide functionalized naphthalene-diimide (NDI) building blocks (NDI-L and NDI-C) in two solvents, namely n-heptane (Hep) and methylcyclohexane (MCH). NDI-L and NDI-C differ only by the peripheral hydrocarbon wedges, consisting of linear C7 chains or cyclic methylcyclohexane rings, respectively. UV/Vis and FTIR spectroscopy studies reveal distinct internal order and H-bonding pattern for NDI-L and NDI-C aggregates irrespective of the solvent system, indicating the dominant role of the intrinsic packing parameters of the individual building block, possibly influenced by the peripheral steric crowding. However, NDI-L produces a significantly stronger gel in Hep compared to MCH as evident from the rheological and thermal properties. In contrast, NDI-C exhibits a clear preference for MCH, producing gel with moderate strength but in Hep it fails to produce 1D morphology or gelation. All-atom molecular dynamics (MD) simulation studies corroborate with the experimental observation and provide the rationale for the observed solvent-shape effect by revealing a quantitative estimate regarding the thermodynamics of self-assembly in these four combinations. Such clear-cut shape-matching effect (between the peripheral hydrocarbon wedge and the solvent system) unambiguously support a direct participation of the solvent molecules during supramolecular polymerization and presence of a closely-adhered solvent shell around the supramolecular polymers, similar to the first layer of water molecules around the protein surface. Solvent induced CD experiments support this hypothesis as induced CD band was observed only from a chiral co-solvent of matching shape. This is reconfirmed by the higher de-solvation temperature of the shape-matching NDI/solvent system combination compared to the shape mis-match combination in variable temperature UV/Vis experiments, revealing transformation to a different aggregate at higher temperatures rather than disassembly to the monomer for all four combinations.


Assuntos
Polímeros , Polimerização , Polímeros/química , Solventes/química , Temperatura , Termodinâmica
6.
Chemphyschem ; 23(24): e202200393, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36052514

RESUMO

The toxicity of amyloid-ß (Aß) oligomers has been known to be higher compared to mature fibrils. Yet the presence of plaques in Alzheimer's disease patients indicates the significance of oligomer to fibril conversion for Aß aggregates. In this study, we investigate Aß13-42 oligomers having two to five peptide chains using extensive all-atom molecular dynamics simulations to identify the on- or off-pathway intermediates in fibril formation pathway. Hamiltonian replica exchange method through solute tempering (REST2) has been employed to explore the different structures attained by these aggregates. Using intra-chain and inter-chain contacts as reaction coordinates, we obtain the free energy surface for the Aß13-42 oligomers. Consequently, their stable conformations and structural features have been identified. The found conformations belonging to most probable structures possess both parallel and anti-parallel ß-sheets, characteristic of on- and off-pathway intermediates, respectively. Further, we have measured the tendency to form fibril like interactions among the ß-sheet forming residues. Our analysis finds that residues 30-36 possess higher tendency to form fibril like contacts among all the residues. While we find stronger interaction among residues 30-36, these amino acids are also found to be more shielded from water compared to others. With previous experimental studies finding these residues to be more crucial for the stability of Aß42 oligomers, we propose that interactions within this patch could trigger seed formation that leads to conversion of on-pathway oligomers into disease relevant fibrils.


Assuntos
Peptídeos beta-Amiloides , Simulação de Dinâmica Molecular , Humanos , Amiloide/química , Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Conformação Proteica em Folha beta , Multimerização Proteica
7.
Langmuir ; 38(49): 15132-15144, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36450094

RESUMO

The molecular mechanism behind the ice growth inhibition by antifreeze proteins (AFPs) is yet to be understood completely. Also, what physical parameters differentiate between the AFP and non-AFP are largely unknown. Thus, to get an atomistic overview of the differential antifreeze activities of different classes of AFPs, we have studied ice growth from different ice surfaces in the presence of a moderately active globular type III AFP and a hyperactive spruce budworm (sbw) AFP. Results are compared with the observations of ice growth simulations in the presence of topologically similar non-AFPs using all-atom molecular dynamics simulations. Simulation data suggest that the ice surface coverage is a critical factor in ice growth inhibition. Due to the presence of an ice binding surface (IBS), AFPs form a high affinity complex with ice, accompanied by a transition of hydration water around the IBS from clathrate-like to ice-like. Several residues around the periphery of the IBS anchor the AFP to the curved ice surface mediated by multiple strong hydrogen bonds, stabilizing the complex immensely. In the high surface coverage regime, the slow unbinding kinetics dominates over the ice growth kinetics and thus facilitates the ice growth inhibition. Due to the non-availability of a proper IBS, non-AFPs form a low-affinity complex with the growing ice surface. As a result, the non-AFPs are continuously repelled by the surface. If the concentration of AFPs is low, then the effective surface coverage is reduced significantly. In this low surface coverage regime, AFPs can also behave like impurities and are engulfed by the growing ice crystal.


Assuntos
Gelo , Simulação de Dinâmica Molecular , Proteínas Anticongelantes/química , Água/química , Ligação de Hidrogênio
8.
Proteins ; 89(1): 116-125, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860277

RESUMO

Hydrophobic association is the key contributor behind the formation of well packed core of a protein which is often believed to be an important step for folding from an unfolded chain to its compact functional form. While most of the protein folding/unfolding studies have evaluated the changes in the hydrophobic interactions during chemical denaturation, the role of hydrophilic amino acids in such processes are not discussed in detail. Here we report the role of the hydrophilic amino acids behind ethanol induced unfolding of protein. Using free energy simulations, we show that chicken villin head piece (HP-36) protein unfolds gradually in presence of water-ethanol binary mixture with increasing composition of ethanol. However, upon mutation of hydrophilic amino acids by glycine while keeping the hydrophobic amino acids intact, the compact state of the protein is found to be stable at all compositions with gradual flattening of the free energy landscape upon increasing compositions. The local environment around the protein in terms of ethanol/water number significantly differs in wild type protein compared to the mutated protein. The calculated Wyman-Tanford preferential binding coefficient of ethanol for wild type protein reveals that a greater number of cosolutes (here ethanol) bind to the unfolded state compared to its folded state. However, no significant increase in binding coefficient of ethanol at the unfolded state is found for mutated protein. Local-bulk partition coefficient calculation also suggests similar scenarios. Our results reveal that the weakening of hydrophobic interactions in aqueous ethanol solution along with larger preferential binding of ethanol to the unfolded state mediated by hydrophilic amino acids combinedly helps unfolding of protein in aqueous ethanol solution.


Assuntos
Aminoácidos , Etanol , Etanol/química , Interações Hidrofóbicas e Hidrofílicas , Desnaturação Proteica , Dobramento de Proteína , Desdobramento de Proteína , Proteínas/química , Água/química
9.
Phys Chem Chem Phys ; 23(31): 16897-16908, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34328153

RESUMO

Amyloid-ß (Aß) oligomers act as intermediates for several neurodegenerative disease-relevant fibril formations. However, gaining insight into the oligomer to fibril conversion process remains a challenge due to the transient nature of small Aß. In this study, we probe the kinetic and thermodynamic stabilities of small Aß(1-42) oligomers in fibrillar conformations to understand from what size these aggregates start forming stable fibrils. With no definite structures available for small Aß42 aggregates, we have started with oligomers extracted from mature fibrils having four, five, six and nine chains stacked together, and have performed order-to-disorder transition on these systems. Using scaled molecular dynamics (sMD) simulation, the timescale for breaking the native contacts of fibrils has been compared. The results indicate that the kinetic stability of oligomers increases with size, especially at the C-terminus end beyond five-chain oligomers. The free energy of breaking the contacts at the ß-sheet regions in the structures has been obtained on an unscaled potential from a free energy extrapolation (FEE) approach. The values show that although stable minima are obtained for larger oligomers due to the enhanced stability of the C-terminus ends, fully stable fibril formation may require aggregates larger than the ones considered in our study. Additionally, dissimilar kinetics for the unbinding of terminal chains across all the oligomers has been observed. The interaction energy values calculated from unscaled MD simulations reveal the crucial role of water in our observations. Our work provides the application of an easy-to-deploy method that sheds light on interactions which could be significant in the early stages of Aß42 fibril formation.


Assuntos
Peptídeos beta-Amiloides/química , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Termodinâmica , Cinética
10.
Proc Natl Acad Sci U S A ; 115(46): E10822-E10829, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30366951

RESUMO

A wide range of mutations in the kinesin motor Kif5A have been linked to a neuronal disorder called hereditary spastic paraplegia (HSP). The position of these mutations can vary, and a range of different motile behaviors have been observed, indicating that the HSP mutants can alter distinct aspects of kinesin mechanochemistry. While focusing on four key HSP-associated mutants, this study examined the structural and dynamic perturbations that arise from these mutations using a series of different computational methods, ranging from bioinformatics analyses to all-atom simulations, that account for solvent effects explicitly. We show that two catalytic domain mutations (R280S and K253N) reduce the microtubule (MT) binding affinity of the kinesin head domains appreciably, while N256S has a much smaller impact. Bioinformatics analysis suggests that the stalk mutation A361V perturbs motor dimerization. Subsequent integration of these effects into a coarse-grained structure-based model of dimeric kinesin revealed that the order-disorder transition of the neck linker is substantially affected, indicating a hampered directionality and processivity of kinesin. The present analyses therefore suggest that, in addition to kinesin-MT binding and coiled-coil dimerization, HSP mutations affecting motor stepping transitions and processivity can lead to disease.


Assuntos
Cinesinas/genética , Paraplegia Espástica Hereditária/genética , Biologia Computacional/métodos , Simulação por Computador , Humanos , Modelos Teóricos , Mutação , Ligação Proteica
11.
Proc Natl Acad Sci U S A ; 115(40): 10052-10057, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224489

RESUMO

Cytoplasmic dyneins play a major role in retrograde cellular transport by moving vesicles and organelles along microtubule filaments. Dyneins are multidomain motor proteins with two heads that coordinate their motion via their interhead tension. Compared with the leading head, the trailing head has a higher detachment rate from microtubules, facilitating the movement. However, the molecular mechanism of such coordination is unknown. To elucidate this mechanism, we performed molecular dynamics simulations on a cytoplasmic dynein with a structure-based coarse-grained model that probes the effect of the interhead tension on the structure. The tension creates a torque that influences the head rotating about its stalk. The conformation of the stalk switches from the α registry to the ß registry during the rotation, weakening the binding affinity to microtubules. The directions of the tension and the torque of the leading head are opposite to those of the trailing head, breaking the structural symmetry between the heads. The leading head transitions less often to the ß registry than the trailing head. The former thus has a greater binding affinity to the microtubule than the latter. We measured the moment arm of the torque from a dynein structure in the simulations to develop a phenomenological model that captures the influence of the head rotating about its stalk on the differential detachment rates of the two heads. Our study provides a consistent molecular picture for interhead coordination via interhead tension.


Assuntos
Citoplasma/química , Dineínas/química , Modelos Químicos , Modelos Moleculares , Animais , Citoplasma/metabolismo , Dineínas/metabolismo , Humanos
12.
Phys Chem Chem Phys ; 22(3): 1534-1542, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31872818

RESUMO

Dynein, a large and complex motor protein, harnesses energy from adenosine triphosphate (ATP) hydrolysis to regulate essential cellular activities. The ATP hydrolysis mechanism for the dynein motor is still shrouded in mystery. Herein, molecular dynamics simulations of a dynein motor disclosed that two water molecules are present close to the γ-phosphate of ATP and Glu1742 at the AAA1 site of dynein. We have proposed three possible mechanisms for the ATP hydrolysis. We divulge by using a quantum mechanics/molecular mechanics (QM/MM) study that two water molecules and Glu1742 are crucial for facilitating the ATP hydrolysis reaction in dynein. Moreover, the ATP hydrolysis step is initiated by the activation of lytic water (W1) by Glu1742 through relay proton transfers with the help of auxiliary water (W2) yielding HPO42- and ADP, as a product. In the next step, a proton is shifted back from Glu1742 to generate inorganic phosphate (H2PO4-) via another relay proton transfer event. The overall activation barrier for the Glu1742 assisted ATP hydrolysis is found to be the most favourable pathway compared to other plausible pathways. We also unearthed that ATP hydrolysis in dynein follows a so-called associative-like pathway in its rate-limiting step. Our study ascertained the important indirect roles of the two amino acids (such as Arg2109, Asn1792) and Mg2+ ion in the ATP hydrolysis of dynein. Additionally, multiple sequence alignment of the different organisms of dynein motors has conveyed the evolutionary importance of the Glu1742, Asn1742, and Arg2109 residues, respectively. As similar mechanisms are also prevalent in other motors, and GTPase and ATPase enzymes, the present finding spells out the definitive requirement of a proton relay process through an extended water-chain as one of the key components in an enzymatic ATP hydrolysis reaction.


Assuntos
Trifosfato de Adenosina/metabolismo , Dineínas/química , Hidrólise , Trifosfato de Adenosina/química , Teoria Quântica
13.
Proc Natl Acad Sci U S A ; 114(41): E8611-E8617, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973894

RESUMO

Motor proteins are active enzymatic molecules that support important cellular processes by transforming chemical energy into mechanical work. Although the structures and chemomechanical cycles of motor proteins have been extensively investigated, the sensitivity of a motor's velocity in response to a force is not well-understood. For kinesin, velocity is weakly influenced by a small to midrange external force (weak susceptibility) but is steeply reduced by a large force. Here, we utilize a structure-based molecular dynamic simulation to study the molecular origin of the weak susceptibility for a single kinesin. We show that the key step in controlling the velocity of a single kinesin under an external force is the ATP release from the microtubule-bound head. Only under large loading forces can the motor head release ATP at a fast rate, which significantly reduces the velocity of kinesin. It underpins the weak susceptibility that the velocity will not change at small to midrange forces. The molecular origin of this velocity reduction is that the neck linker of a kinesin only detaches from the motor head when pulled by a large force. This prompts the ATP binding site to adopt an open state, favoring ATP release and reducing the velocity. Furthermore, we show that two load-bearing kinesins are incapable of equally sharing the load unless they are very close to each other. As a consequence of the weak susceptibility, the trailing kinesin faces the challenge of catching up to the leading one, which accounts for experimentally observed weak cooperativity of kinesins motors.


Assuntos
Trifosfato de Adenosina/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/metabolismo , Sítios de Ligação , Humanos , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica
14.
Phys Chem Chem Phys ; 21(35): 19298-19310, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31451813

RESUMO

The ice/water interface recognition mechanism of antifreeze proteins (AFPs) is highly contentious. Conventionally, protein adsorption on a solid surface is primarily driven by the polar interactions between the hydrophilic residues of the protein and interfacial water of the solid surface. Ice surface recognition by a type III AFP is surprising in this context where the ice binding surface (IBS) is hydrophobic. The present study provides molecular insight into the unusual interface recognition phenomenon of a type III AFP (QAE isoform) from Macrozoarces americanus. Potential of mean force calculations show that the type III AFP adsorbs on the ice surface mediated through a layer of ordered water. Molecular dynamics simulations at lower than ambient temperature reveal that the flat hydrophobic IBS induces ordering of water. The excellent geometrical synergy between the hydration water structure around the IBS and water arrangements on the pyramidal surface favours adsorption on the pyramidal plane. Mutations that interrupt the hydration shell water ordering essentially lead to less efficient adsorption, which greatly reduces the anti-freezing activity of the AFP. Binding free energy calculations of the wild-type and several mutant AFPs reveal that the binding affinity is linearly correlated with the experimentally observed thermal hysteresis activity. Therefore, binding to a specific ice plane with considerable affinity is the dictating factor of the anti-freeze activity for a type III AFP. Mechanistic insights into the ice binding process of the wild-type and different mutant AFPs obtained from this study pave the way for rational design of type III variants with much improved activity, which possesses ample industrial applicability, particularly in cryo-preservation.


Assuntos
Proteínas Anticongelantes/química , Proteínas de Peixes/química , Gelo , Perciformes , Água/química , Animais , Proteínas Anticongelantes/genética , Temperatura Baixa , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica
15.
J Chem Phys ; 149(5): 054501, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089386

RESUMO

The composition dependent local environment of three organic dyes in binary mixtures of a room temperature ionic liquid (1-methyl-3-pentylimidazolium bromide, [pmim][Br]) and water is studied by fluorescence correlation spectroscopy (FCS) and molecular dynamics (MD) simulations. We used three dyes-neutral coumarin 480 (C480), anionic coumarin 343 (C343), and highly hydrophobic 4-(dicyanomethylene)-2-methyl-6-(p-dimethyl-aminostyryl)-4H-pyran (DCM)-to probe different environments in the binary mixtures. The heterogeneity of the [pmim][Br]-water mixture leads to multiple values (i.e., distribution) of diffusion coefficients (Dt). In these binary mixtures, the effective viscosity (ηeff, obtained from FCS) and the local concentration of the [pmim][Br] around the three dyes (revealed by MD simulations) are found to be quite different than that in bulk. The viscosity experienced by the C480 and C343 dyes is almost twice as large as that experienced by DCM dye. Through rigorous MD simulation, we show that in the vicinity of the less hydrophobic coumarin dyes (C480 and C343) compared to DCM dye, the local concentration of the [pmim][Br] is ∼3-7 times larger than that in bulk. In the case of the most hydrophobic dye, DCM, the local concentration of [pmim][Br] is almost similar to bulk-like. Further analysis reveals the formation of hydrogen bond between the imidazolium ring of [pmim][Br] and the carbonyl oxygen atom of the coumarin dyes (C-H[pmim][Br]⋯O=CDye). Finally, computer simulation indicates a slow component of solvation dynamics in the [pmim][Br]-water mixture in the time scale of ∼100-200 ps, which is similar to the experimental observation.

16.
Nucleic Acids Res ; 44(17): 8363-75, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27466387

RESUMO

Topoisomerase 1 (Top1) is essential for removing the DNA supercoiling generated during replication and transcription. Anticancer drugs like camptothecin (CPT) and its clinical derivatives exert their cytotoxicity by reversibly trapping Top1 in covalent complexes on the DNA (Top1cc). Poly(ADP-ribose) polymerase (PARP) catalyses the addition of ADP-ribose polymers (PAR) onto itself and Top1. PARP inhibitors enhance the cytotoxicity of CPT in the clinical trials. However, the molecular mechanism by which PARylation regulates Top1 nuclear dynamics is not fully understood. Using live-cell imaging of enhanced green fluorescence tagged-human Top1, we show that PARP inhibitors (Veliparib, ABT-888) delocalize Top1 from the nucleolus to the nucleoplasm, which is independent of Top1-PARP1 interaction. Using fluorescence recovery after photobleaching and subsequent fitting of the data employing kinetic modelling we demonstrate that ABT-888 markedly increase CPT-induced bound/immobile fraction of Top1 (Top1cc) across the nuclear genome, suggesting Top1-PARylation counteracts CPT-induced stabilization of Top1cc. We further show Trp205 and Asn722 of Top1 are critical for subnuclear dynamics. Top1 mutant (N722S) was restricted to the nucleolus in the presence of CPT due to its deficiency in the accumulation of CPT-induced Top1-PARylation and Top1cc formation. This work identifies ADP-ribose polymers as key determinant for regulating Top1 subnuclear dynamics.


Assuntos
Camptotecina/farmacologia , Núcleo Celular/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Benzimidazóis/farmacologia , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Difusão , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/metabolismo , Células HCT116 , Humanos , Cinética , Proteínas Mutantes/metabolismo , Plasmídeos/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
17.
Langmuir ; 33(28): 7202-7214, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28650167

RESUMO

The principal mechanism of ice recognition by antifreeze protein (AFP) has been a topic of intense discussion in recent times. Despite many experimental and theoretical studies, the detailed understanding of the process remains elusive. The present work aims to explore the molecular mechanism of ice recognition by an insect AFP from the spruce budworm, sbwAFP. As evident from our simulation, the water dynamics becomes very sluggish around the ice binding surface (IBS) as a result of the combined effect of confinement and ordering induced by the perfectly aligned methyl side chains of threonine residues, the THR ladder. The hydroxyl groups of threonine form strong hydrogen bonds with few of those highly ordered water molecules that are close to the THR ladder, which is the origin of anchored clathrate water at the IBS of sbwAFP. We propose anchored clathrate-mediated basal plane recognition by sbwAFP. The AFP adsorbed on the basal plane through water clathrate framed around the IBS. The surface of the basal plane and anchored clathrate water completes the caging around the threonine residues, which is the origin of the binding plane specificity of sbwAFP. This adsorbed AFP-ice complex undergoes dynamic crossover to a hydrogen-bonded complex within the thermal hysteresis (TH) regime of this particular AFP. The anchored clathrate water becomes part of the newly grown basal front as a result of the geometrical matches between the basal plane and the anchored clathrate water repeat distance. This observation provides a structural rationale for the experimentally observed time-dependent increase in TH activity for insect AFP. Our study proposes clathrate-mediated ice recognition by AFP and elucidates the dynamic events involved during ice binding by the insect AFP.


Assuntos
Proteínas Anticongelantes/química , Adsorção , Animais , Ligação de Hidrogênio , Gelo , Mariposas
18.
PLoS Comput Biol ; 12(8): e1005035, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27494025

RESUMO

A structure-based model of myosin motor is built in the same spirit of our early work for kinesin-1 and Ncd towards physical understanding of its mechanochemical cycle. We find a structural adaptation of the motor head domain in post-powerstroke state that signals faster ADP release from it compared to the same from the motor head in the pre-powerstroke state. For dimeric myosin, an additional forward strain on the trailing head, originating from the postponed powerstroke state of the leading head in the waiting state of myosin, further increases the rate of ADP release. This coordination between the two heads is the essence of the processivity of the cycle. Our model provides a structural description of the powerstroke step of the cycle as an allosteric transition of the converter domain in response to the Pi release. Additionally, the variation in structural elements peripheral to catalytic motor domain is the deciding factor behind diverse directionalities of myosin motors (myosin V & VI). Finally, we observe that there are general rules for functional molecular motors across the different families. Allosteric structural adaptation of the catalytic motor head in different nucleotide states is crucial for mechanochemistry. Strain-mediated coordination between motor heads is essential for processivity and the variation of peripheral structural elements is essential for their diverse functionalities.


Assuntos
Fenômenos Biomecânicos/fisiologia , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Miosinas/química , Miosinas/metabolismo , Biologia Computacional , Simulação de Dinâmica Molecular
19.
Phys Chem Chem Phys ; 19(18): 11678-11689, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28435965

RESUMO

The mechanism of ice recognition by antifreeze protein (AFP) is a topic of recent interest. Here, using equilibrium simulations and free energy calculations, we provide structural rationale to the observed experimental anomalies on type I AFP (wfAFP isoform HPLC6) and its mutants as well as probe the molecular origin of ice recognition by them. Our results clearly demonstrate that the interplay between the conformational and hydration properties dictates the ice binding ability of type I AFP and its mutants. We find that HPLC6 exists as a highly stable long helix which adsorbs on the ice surface through the ordered water cages around the CH3 group of threonine (THR) residues, rather than directly binding to the ice surface via threonine (THR) through hydrogen bonding. Upon mutating THR with serine (SER), the straight helix conformation of HPLC6 disappears and the most stable conformation is a kinked helix devoid of ice binding ability. Free energy calculations reveal that there is a dynamic equilibrium between straight and bent helical conformations in the case of a valine (VAL) mutant. The straight long helical form of the VAL mutant also has the ability to form an ordered water cage structure around the CH3 groups of the VAL residues and thereby efficiently adsorbs on an ice plane similar to the wild type AFP.


Assuntos
Proteínas Anticongelantes Tipo I/metabolismo , Água/metabolismo , Proteínas Anticongelantes Tipo I/química , Proteínas Anticongelantes Tipo I/genética , Ligação de Hidrogênio , Gelo , Simulação de Dinâmica Molecular , Mutação , Análise de Componente Principal , Ligação Proteica , Conformação Proteica em alfa-Hélice , Temperatura , Água/química
20.
Phys Chem Chem Phys ; 18(48): 33085-33093, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27886288

RESUMO

Dyneins, a class of motor proteins consisting of six AAA+ modules (AAA1-AAA6), convert chemical energy derived from the hydrolysis of ATP into mechanical energy to walk along the microtubule track towards its minus end while accomplishing various cellular tasks including the transportation of various intracellular cargos. In a full mechanochemical cycle, dynein goes through ATP binding induced open to closed state transition of AAA1, hydrolysis of that ATP and closed to open state transition induced by the release of hydrolysed products along with linker remodelling in different nucleotide states. Here we built structure based models (SBMs) to explore the sequence of events of this mechanochemical cycle from structural aspects. Free energy and kinetic simulation approaches on a multi-basin SBM of dynein reveal the following pathways: (1) in the closing pathway, the AAA1 domain first converts to a closed state followed by the movement of the linker and (2) in the opening transition, initially the AAA1 domain partially opens up and then the complete linker movement takes place followed by the complete opening of the AAA1 domain. In the opening transition, we have observed two intermediate states from our simulations where the AAA1 domain is partially opened. However, in one state the linker is at a closed position and in the other the linker is at an open position. The existence of such intermediates (Pi released, ADP bound state) of dynein has been suggested by numerous experimental studies earlier. Finally, we discuss the biological relevance of this sequence of events in terms of processivity and efficiency of the cycle. The current study also shows how the basic principle of protein folding can be extended to understand complex phenomena like the stepping mechanism of motor proteins.


Assuntos
Dineínas , Microtúbulos , Animais , Dineínas/química , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA