Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Langmuir ; 40(12): 6253-6260, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489512

RESUMO

The redox behavior and chemisorption of cysteamine (CA) at a charged mercury surface are described, with an emphasis on its acid-base properties supported by molecular dynamics and quantum mechanical calculations. It was found that CA forms chemisorbed layers on the surface of the mercury electrode. The formation of Hg-CA complexes is connected to mercury disproportionation, as reflected in peaks SII and SI at potentials higher than the electrode potential of zero charge (p.z.c.). Both the process of chemisorption of CA and its consequent redox transformation are proton-dependent. Also, depending on the protonation of CA, the formation of typical populations of chemisorbed conformers can be observed. In addition, cystamine (CA disulfide dimer) can be reduced on the mercury surface. Between the potentials of this reduction and peak SI, the p.z.c. of the electrode used can be found. Furthermore, CA can serve as an LMW catalyst for hydrogen evolution. The mechanistic insights presented here can be used for follow-up research on CA chemisorption and targeted modification of other metallic surfaces.

2.
Angew Chem Int Ed Engl ; 62(29): e202304989, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37222528

RESUMO

The S-glycosyltransferase LmbT, involved in the biosynthesis of lincomycin A, is the only known enzyme that catalyzes the enzymatic incorporation of rare amino acid L-ergothioneine (EGT) into secondary metabolites. Here, we show the structure and function analyses of LmbT. Our in vitro analysis of LmbT revealed that the enzyme shows promiscuous substrate specificity toward nitrogenous base moieties in the generation of unnatural nucleotide diphosphate (NDP)-D-α-D-lincosamides. Furthermore, the X-ray crystal structures of LmbT in its apo form and in complex with substrates indicated that the large conformational changes of the active site occur upon binding of the substrates, and that EGT is strictly recognized by salt-bridge and cation-π interactions with Arg260 and Trp101, respectively. The structure of LmbT in complex with its substrates, the docking model with the EGT-S-conjugated lincosamide, and the structure-based site-directed mutagenesis analysis revealed the structural details of the LmbT-catalyzed SN 2-like S-glycosylation reaction with EGT.


Assuntos
Antibacterianos , Lincomicina , Glicosilação , Antibacterianos/química , Lincosamidas/química , Lincosamidas/metabolismo , Lincomicina/química , Glicosiltransferases/metabolismo , Cristalografia por Raios X
3.
J Am Chem Soc ; 142(7): 3440-3448, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31944685

RESUMO

Antitumor pyrrolobenzodiazepines (PBDs), lincosamide antibiotics, quorum-sensing molecule hormaomycin, and antimicrobial griselimycin are structurally and functionally diverse groups of actinobacterial metabolites. The common feature of these compounds is the incorporation of l-tyrosine- or l-leucine-derived 4-alkyl-l-proline derivatives (APDs) in their structures. Here, we report that the last reaction in the biosynthetic pathway of APDs, catalyzed by F420H2-dependent Apd6 reductases, contributes to the structural diversity of APD precursors. Specifically, the heterologous overproduction of six Apd6 enzymes demonstrated that Apd6 from the biosynthesis of PBDs and hormaomycin can reduce only an endocyclic imine double bond, whereas Apd6 LmbY and partially GriH from the biosyntheses of lincomycin and griselimycin, respectively, also reduce the more inert exocyclic double bond of the same 4-substituted Δ1-pyrroline-2-carboxylic acid substrate, making LmbY and GriH unusual, if not unique, among reductases. Furthermore, the differences in the reaction specificity of the Apd6 reductases determine the formation of the fully saturated APD moiety of lincomycin versus the unsaturated APD moiety of PBDs, providing molecules with optimal shapes to bind their distinct biological targets. Moreover, the Apd6 reductases establish the first F420H2-dependent enzymes from the luciferase-like hydride transferase protein superfamily in the biosynthesis of bioactive molecules. Finally, our bioinformatics analysis demonstrates that Apd6 and their homologues, widely distributed within several bacterial phyla, play a role in the formation of novel yet unknown natural products with incorporated l-proline-like precursors and likely in the microbial central metabolism.


Assuntos
Benzodiazepinas/metabolismo , Lincomicina/biossíntese , Oxirredutases/metabolismo , Pirróis/metabolismo , Benzodiazepinas/química , Benzodiazepinas/farmacologia , Catálise , Depsipeptídeos/biossíntese , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Lincomicina/química , Lincomicina/farmacologia , Modelos Moleculares , Oxirredutases/química , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Prolina/análogos & derivados , Prolina/metabolismo , Pirróis/química , Pirróis/farmacologia , Riboflavina/análogos & derivados , Riboflavina/química , Riboflavina/metabolismo , Especificidade por Substrato , Tirosina/análogos & derivados , Tirosina/metabolismo
4.
Langmuir ; 33(43): 11930-11935, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28958149

RESUMO

In this study, we determined the Pd(II) chlorocomplex species that has the most favorable interaction with an electropolymerized and protonated polyaniline (PANI) film. This study was completed with the intent to use this species to electrochemically build atomic palladium clusters in the PANI matrix. Varying amounts of NaCl were added to a K2PdCl4/HClO4 solution to result in three species studied: PdCl2(H2O)2, PdCl3(H2O)-, and PdCl42-. UV-vis spectroscopy was used to confirm the speciation, and Raman spectroscopy, X-ray photoelectron spectroscopy, and cyclic voltammograms were used to probe the interaction between the Pd species and PANI. It was determined that PdCl3(H2O)- most effectively interacts with PANI as a result of the charge balance between the anion and the protonated nitrogen-containing groups in the polymer. It has been also found that some fraction of inserted Pd(II) cannot be reduced to Pd(0).

5.
Langmuir ; 32(33): 8315-21, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27479848

RESUMO

A sorption process of RuCl3 in phosphate buffer by polyaniline (PANI) powder chemically synthesized from phosphoric acid was spectrophotometrically monitored as a function of time. It was determined that the sorption process follows the Langmuir and Freundlich isotherms, and their constants were evaluated. It was determined that chemisorption was the rate-controlling step. By conducting detailed studies, we assigned the chemisorption to Lewis acid based interactions of the sorbent electron pair localized at the benzenoid amine (-NH2) and quinoid imine (═NH) groups, with the sorbate, RuCl3, as the electron acceptor. The stability of the interaction over a period of ∼1 week showed that the presence of the Ru(III) in the PANI matrix reverses its state from emeraldine base to emeraldine salt, resulting in a change of conductivity. The partial electron donor based charge transfer is a slow process as compared to the sorption process involving Brønsted acid doping.

6.
Antimicrob Agents Chemother ; 59(6): 3611-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25801573

RESUMO

The ABCF family protein Msr(A) confers high resistance to macrolides but only low resistance to ketolides in staphylococci. Mutations in conserved functional regions of ClpX as well as deletion of clpX significantly increased Msr(A)-mediated resistance to the ketolide antibiotic telithromycin. ClpX is the chaperone component of the ClpXP two-component proteolytic system. Nevertheless, no changes in resistance were observed in a clpP knockout strain expressing msr(A), demonstrating that ClpX affects Msr(A) independently of ClpP.


Assuntos
Antibacterianos/farmacologia , Cetolídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Macrolídeos/farmacologia , Mutação
7.
Antimicrob Agents Chemother ; 59(2): 1360-4, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25512423

RESUMO

Detailed mutational analysis examines the roles of individual residues of the Vga(A) linker in determining the antibiotic resistance phenotype. It defines a narrowed region of residues 212 to 220 whose composition determines the resistance specificity to lincosamides, pleuromutilins, and/or streptogramins A. From the analogy with the recently described function of the homologous ABC-F protein EttA as a translational factor, we infer that the Vga(A) linker interacts with the ribosome and directly or indirectly affects the binding of the respective antibiotic.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Diterpenos/farmacologia , Farmacorresistência Bacteriana Múltipla , Lincosamidas/farmacologia , Testes de Sensibilidade Microbiana , Compostos Policíclicos , Ribossomos/metabolismo , Estreptograminas/farmacologia , Pleuromutilinas
8.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 4): 943-57, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699640

RESUMO

The S-adenosyl-L-methionine (SAM)-dependent methyltransferase CcbJ from Streptomyces caelestis catalyzes one of the final steps in the biosynthesis of the antibiotic celesticetin, methylation of the N atom of its proline moiety, which greatly enhances the activity of the antibiotic. Since several celesticetin variants exist, this enzyme may be able to act on a variety of substrates. The structures of CcbJ determined by MAD phasing at 3.0 Šresolution, its native form at 2.7 Šresolution and its complex with S-adenosyl-L-homocysteine (SAH) at 2.9 Šresolution are reported here. Based on these structures, three point mutants, Y9F, Y17F and F117G, were prepared in order to study its behaviour as well as docking simulations of both CcbJ-SAM-substrate and CcbJ-SAH-product complexes. The structures show that CcbJ is a class I SAM-dependent methyltransferase with a wide active site, thereby suggesting that it may accommodate a number of different substrates. The mutation results show that the Y9F and F117G mutants are almost non-functional, while the Y17F mutant has almost half of the wild-type activity. In combination with the docking studies, these results suggest that Tyr9 and Phe117 are likely to help to position the substrate for the methyl-transfer reaction and that Tyr9 may also facilitate the reaction by removing an H(+) ion. Tyr17, on the other hand, seems to operate by helping to stabilize the SAM cofactor.


Assuntos
Metiltransferases/química , Streptomyces/enzimologia , Metiltransferases/genética , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína
9.
Chembiochem ; 14(17): 2259-62, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24166757

RESUMO

Chemical diversity: Two SAM-dependent N-methyltransferases-LmbJ from the biosynthesis of the antibiotic lincomycin and CcbJ from celesticetin biosynthesis-have been characterized and compared. Both tested enzymes form multimers and are able to utilize N-demethyllincomycin, the natural substrate of LmbJ, with comparable efficiency.


Assuntos
Antibacterianos/biossíntese , Biocatálise , Lincomicina/biossíntese , Lincosamidas/biossíntese , Metiltransferases/metabolismo , Antibacterianos/química , Lincomicina/química , Lincosamidas/química , Metiltransferases/química , Conformação Molecular , Especificidade por Substrato
10.
Phys Chem Chem Phys ; 15(20): 7577-85, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23588796

RESUMO

The space-charge region of an organic semiconductor (OS)-insulator interface is probed by analyzing the spontaneous, thermally driven drain current fluctuations of a field-effect transistor in which the OS forms the gate electrode. This so called "excess drain current noise" is the outcome of local fluctuations of the Fermi level, resulting from stochastic exchange of electrons between traps near the Fermi level. The power spectral density of this noise is characteristic of a Lorentzian process with a distribution of time constants, which is attributed to the disorder in the OS film. Furthermore, this disorder leads to local inhomogeneity of the work function in the film and a finite correlation length of the work function fluctuations. The measurement of work function noise is only possible within a correlation length of the OS-insulator interface. Through systematic variation of gate voltage, primary doping and secondary doping levels, the correlation length, disorder, and the trapping/de-trapping time constant are examined on polyaniline as a representative OS. A model is proposed for local work function variations and spontaneous charge-carrier fluctuations within polyaniline films with consequences for organic electronics using organic semiconductors.

11.
Nucleic Acids Res ; 38(14): e144, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20484377

RESUMO

Eukaryotic cells begin to assemble discrete, nucleoplasmic repair foci within seconds after the onset of exposure to ionizing radiation. Real-time imaging of this assembly has the potential to further our understanding of the effects of medical and environmental radiation exposure. Here, we describe a microirradiation system for targeted delivery of ionizing radiation to individual cells without the need for specialized facilities. The system consists of a 25-micron diameter electroplated Nickel-63 electrode, enveloped in a glass capillary and mounted in a micromanipulator. Because of the low energy of the beta radiation and the minute total amount of isotope present on the tip, the device can be safely handled with minimum precautions. We demonstrate the use of this system for tracking assembly of individual repair foci in real time in live U2OS human osteosarcoma cells. Results indicate that there is a subset of foci that appear and disappear rapidly, before a plateau level is reached approximately 30 min post-exposure. This subset of foci would not have been evident without real-time observation. The development of a microirradiation system that is compatible with a standard biomedical laboratory expands the potential for real-time investigation of the biological effects of ionizing radiation.


Assuntos
Quebras de DNA de Cadeia Dupla , Microscopia/instrumentação , Níquel , Radiação Ionizante , Radioisótopos , Linhagem Celular Tumoral , Eletrodos , Corantes Fluorescentes , Humanos , Proteínas Luminescentes , Micromanipulação
12.
Microbiol Res ; 265: 127186, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36155963

RESUMO

Here we provide a review on TldD/TldE family proteins, summarizing current knowledge and outlining further research perspectives. Despite being widely distributed in bacteria and archaea, TldD/TldE proteins have been escaping attention for a long time until several recent reports pointed to their unique features. Specifically, TldD/TldE generally act as peptidases, though some of them turned out to be N-deacetylases. Biological function of TldD/TldE has been extensively described in bacterial specialized metabolism, in which they participate in the biosynthesis of lincosamide antibiotics (as N-deacetylases), and in the biosynthesis of ribosomally synthesized and post-translationally modified bioactive peptides (as peptidases). These enzymes possess special position in the relevant biosynthesis since they convert non-bioactive intermediates into bioactive metabolites. Further, based on a recent study of Escherichia coli TldD/TldE, these heterodimeric metallopeptidases possess a new protein fold exhibiting several structural features with no precedent in the Protein Data Bank. The most interesting ones are structural elements forming metal-containing active site on the inner surface of the catalytically active subunit TldD, in which substrates bind through ß sheet interactions in the sequence-independent manner. It results in relaxed substrate specificity of TldD/TldE, which is counterbalanced by enclosing the active centre within the hollow core of the heterodimer and only appropriate substrates can entry through a narrow channel. Based on the published data, we hypothesize a yet unrecognized central metabolic function of TldD/TldE in the degradation of (partially) unfolded proteins, i.e., in protein quality control.


Assuntos
Escherichia coli , Peptídeo Hidrolases , Antibacterianos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Lincosamidas/metabolismo , Metaloproteases/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/química
13.
Front Cell Infect Microbiol ; 11: 629723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828997

RESUMO

The estimation of oral microbiome (OM) taxonomic composition in periodontally healthy individuals can often be biased because the clinically periodontally healthy subjects for evaluation can already experience dysbiosis. Usually, they are included just based on the absence of clinical signs of periodontitis. Additionally, the age of subjects is used to be higher to correspond well with tested groups of patients with chronic periodontitis, a disorder typically associated with aging. However, the dysbiosis of the OM precedes the clinical signs of the disease by many months or even years. The absence of periodontal pockets thus does not necessarily mean also good periodontal health and the obtained image of "healthy OM" can be distorted.To overcome this bias, we taxonomically characterized the OM in almost a hundred young students of dentistry with precise oral hygiene and no signs of periodontal disease. We compared the results with the OM composition of older periodontally healthy individuals and also a group of patients with severe periodontitis (aggressive periodontitis according to former classification system). The clustering analysis revealed not only two compact clearly separated clusters corresponding to each state of health, but also a group of samples forming an overlap between both well-pronounced states. Additionally, in the cluster of periodontally healthy samples, few outliers with atypical OM and two major stomatotypes could be distinguished, differing in the prevalence and relative abundance of two main bacterial genera: Streptococcus and Veillonella. We hypothesize that the two stomatotypes could represent the microbial succession from periodontal health to starting dysbiosis. The old and young periodontally healthy subjects do not cluster separately but a trend of the OM in older subjects to periodontitis is visible. Several bacterial genera were identified to be typically more abundant in older periodontally healthy subjects.


Assuntos
Periodontite Agressiva , Periodontite Crônica , Microbiota , Idoso , Disbiose , Humanos , Bolsa Periodontal
14.
mBio ; 12(5): e0173121, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34488446

RESUMO

In natural environments, antibiotics are important means of interspecies competition. At subinhibitory concentrations, they act as cues or signals inducing antibiotic production; however, our knowledge of well-documented antibiotic-based sensing systems is limited. Here, for the soil actinobacterium Streptomyces lincolnensis, we describe a fundamentally new ribosome-mediated signaling cascade that accelerates the onset of lincomycin production in response to an external ribosome-targeting antibiotic to synchronize antibiotic production within the population. The entire cascade is encoded in the lincomycin biosynthetic gene cluster (BGC) and consists of three lincomycin resistance proteins in addition to the transcriptional regulator LmbU: a lincomycin transporter (LmrA), a 23S rRNA methyltransferase (LmrB), both of which confer high resistance, and an ATP-binding cassette family F (ABCF) ATPase, LmrC, which confers only moderate resistance but is essential for antibiotic-induced signal transduction. Specifically, antibiotic sensing occurs via ribosome-mediated attenuation, which activates LmrC production in response to lincosamide, streptogramin A, or pleuromutilin antibiotics. Then, ATPase activity of the ribosome-associated LmrC triggers the transcription of lmbU and consequently the expression of lincomycin BGC. Finally, the production of LmrC is downregulated by LmrA and LmrB, which reduces the amount of ribosome-bound antibiotic and thus fine-tunes the cascade. We propose that analogous ABCF-mediated signaling systems are relatively common because many ribosome-targeting antibiotic BGCs encode an ABCF protein accompanied by additional resistance protein(s) and transcriptional regulators. Moreover, we revealed that three of the eight coproduced ABCF proteins of S. lincolnensis are clindamycin responsive, suggesting that the ABCF-mediated antibiotic signaling may be a widely utilized tool for chemical communication. IMPORTANCE Resistance proteins are perceived as mechanisms protecting bacteria from the inhibitory effect of their produced antibiotics or antibiotics from competitors. Here, we report that antibiotic resistance proteins regulate lincomycin biosynthesis in response to subinhibitory concentrations of antibiotics. In particular, we show the dual character of the ABCF ATPase LmrC, which confers antibiotic resistance and simultaneously transduces a signal from ribosome-bound antibiotics to gene expression, where the 5' untranslated sequence upstream of its encoding gene functions as a primary antibiotic sensor. ABCF-mediated antibiotic signaling can in principle function not only in the induction of antibiotic biosynthesis but also in selective gene expression in response to any small molecules targeting the 50S ribosomal subunit, including clinically important antibiotics, to mediate intercellular antibiotic signaling and stress response induction. Moreover, the resistance-regulatory function of LmrC presented here for the first time unifies functionally inconsistent ABCF family members involving antibiotic resistance proteins and translational regulators.


Assuntos
Adenosina Trifosfatases/metabolismo , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Lincomicina/biossíntese , Lincomicina/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Metiltransferases , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Família Multigênica , Ribossomos/metabolismo , Transdução de Sinais , Streptomyces/metabolismo , Fatores de Transcrição
15.
Front Cell Infect Microbiol ; 11: 602643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777830

RESUMO

The dysbiosis of oral microbiome (OM) precedes the clinical signs of periodontal disease. Its simple measure thus could indicate individuals at risk of periodontitis development; however, such a tool is still missing. Up to now, numerous microbial taxa were associated with periodontal health or periodontitis. The outputs of most studies could, nevertheless, be slightly biased from following two reasons: First, the healthy group is often characterized only by the absence of the disease, but the individuals could already suffer from dysbiosis without any visible signs. Second, the healthy/diseased OM characteristics are frequently determined based on average data obtained for whole groups of periodontally healthy persons versus patients. Especially in smaller sets of tested individuals the typical individual variability can thus complicate the unambiguous assignment of oral taxa to respective state of health. In this work the taxonomic composition of OM was evaluated for 20 periodontally healthy individuals and 15 patients with chronic periodontitis. The narrowed selection set of the most diseased patients (confirmed by clinical parameters) and the most distant group of healthy individuals with the lowest probability of dysbiosis was determined by clustering analysis and used for identification of marker taxa. Based on their representation in each individual oral cavity we proposed the numeric index of periodontal health called R/G value. Its diagnostic potential was further confirmed using independent set of 20 periodontally healthy individuals and 20 patients with periodontitis with 95 percent of samples assigned correctly. We also assessed the individual temporal OM dynamics in periodontal health and we compared it to periodontitis. We revealed that the taxonomic composition of the system changes dynamically but generally it ranges within values typical for periodontal health or transient state, but far from values typical for periodontitis. R/G value tool, formulated from individually evaluated data, allowed us to arrange individual OMs into a continuous series, instead of two distinct groups, thus mimicking the gradual transformation of a virtual person from periodontal health to disease. The application of R/G value index thus represents a very promising diagnostic tool for early prediction of persons at risk of developing periodontal disease.


Assuntos
Periodontite Crônica , Microbiota , Disbiose , Humanos
16.
Antimicrob Agents Chemother ; 54(2): 927-30, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19917754

RESUMO

The lincomycin biosynthetic gene lmbX was deleted in Streptomyces lincolnensis ATCC 25466, and deletion of this gene led to abolition of lincomycin production. The results of complementation experiments proved the blockage in the biosynthesis of lincomycin precursor 4-propyl-L-proline. Feeding this mutant strain with precursor derivatives resulted in production of 4'-butyl-4'-depropyllincomycin and 4'-pentyl-4'-depropyllincomycin in high titers and without lincomycin contamination. Moreover, 4'-pentyl-4'-depropyllincomycin was found to be more active than lincomycin against clinical Staphylococcus isolates with genes determining low-level lincosamide resistance.


Assuntos
Antibacterianos/metabolismo , Antibacterianos/farmacologia , Lincomicina/metabolismo , Lincomicina/farmacologia , Staphylococcus/efeitos dos fármacos , Streptomyces/metabolismo , Antibacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Lincomicina/análogos & derivados , Lincomicina/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Prolina/análogos & derivados , Prolina/metabolismo , Infecções Estafilocócicas/microbiologia , Streptomyces/genética
17.
Anal Chem ; 82(21): 9028-33, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20929247

RESUMO

The utility and performance of label-free, oligonucleotide probes for reagentless detection of dilute target analytes was examined using a voltammetric transduction principle in an array format. Multistep, solid-state fabrication yielded preproduction arrays of 16 individually addressable, 30 µm diameter microelectrodes in a 30 mm × 6.5 mm × 0.5 mm dipstick disposable device. The specificity of 16 nucleotide (nt) 2'-O-methylribonucleic acid and 22 nt DNA backbone probes bound through Mg(2+)-phosphonate bridges to polypyrrole films on the microelectrodes were studied using microbial target RNAs of various lengths. Probe-specific interactions with Escherichia coli O157 H7 23S rRNA (2907 nt) and Candida albicans 18S rRNA (1788 nt) were detected at 65 and 58 fmol/mL, respectively, in volumes as low as 0.5 mL. Specificity studies showed that, for a given probe, "nontarget" transcripts can contribute to changes in the voltammetric detection signal, though with responses that never exceed 70% of the detection signal acquired for specifically designed complementary targets. These results statistically validate the use of the voltammetric microelectrode array for obtaining a "yes-no" answer on complementary specific binding. The study also identifies challenges and pitfalls for the selection strategies of oligonucleotide probes.


Assuntos
Candida albicans/isolamento & purificação , Escherichia coli O157/isolamento & purificação , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Sondas de Oligonucleotídeos/química , RNA Bacteriano/análise , RNA Fúngico/análise , Candida albicans/genética , Candidíase/microbiologia , Desenho de Equipamento , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/genética , Humanos , Microeletrodos
18.
PLoS Pathog ; 4(12): e1000243, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19096520

RESUMO

Mitochondrial processing peptidases are heterodimeric enzymes (alpha/betaMPP) that play an essential role in mitochondrial biogenesis by recognizing and cleaving the targeting presequences of nuclear-encoded mitochondrial proteins. The two subunits are paralogues that probably evolved by duplication of a gene for a monomeric metallopeptidase from the endosymbiotic ancestor of mitochondria. Here, we characterize the MPP-like proteins from two important human parasites that contain highly reduced versions of mitochondria, the mitosomes of Giardia intestinalis and the hydrogenosomes of Trichomonas vaginalis. Our biochemical characterization of recombinant proteins showed that, contrary to a recent report, the Trichomonas processing peptidase functions efficiently as an alpha/beta heterodimer. By contrast, and so far uniquely among eukaryotes, the Giardia processing peptidase functions as a monomer comprising a single betaMPP-like catalytic subunit. The structure and surface charge distribution of the Giardia processing peptidase predicted from a 3-D protein model appear to have co-evolved with the properties of Giardia mitosomal targeting sequences, which, unlike classic mitochondrial targeting signals, are typically short and impoverished in positively charged residues. The majority of hydrogenosomal presequences resemble those of mitosomes, but longer, positively charged mitochondrial-type presequences were also identified, consistent with the retention of the Trichomonas alphaMPP-like subunit. Our computational and experimental/functional analyses reveal that the divergent processing peptidases of Giardia mitosomes and Trichomonas hydrogenosomes evolved from the same ancestral heterodimeric alpha/betaMPP metallopeptidase as did the classic mitochondrial enzyme. The unique monomeric structure of the Giardia enzyme, and the co-evolving properties of the Giardia enzyme and substrate, provide a compelling example of the power of reductive evolution to shape parasite biology.


Assuntos
Evolução Molecular , Giardia lamblia/genética , Metaloendopeptidases/genética , Trichomonas vaginalis/genética , Sequência de Aminoácidos , Animais , Regulação para Baixo/genética , Dosagem de Genes , Giardia lamblia/metabolismo , Giardia lamblia/ultraestrutura , Glicina/química , Glicina/genética , Glicina/fisiologia , Hidrogênio/metabolismo , Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Organelas/metabolismo , Filogenia , Domínios Proteicos Ricos em Prolina/genética , Domínios Proteicos Ricos em Prolina/fisiologia , Multimerização Proteica , Processamento de Proteína Pós-Traducional/genética , Subunidades Proteicas/genética , Transporte Proteico , Trichomonas vaginalis/metabolismo , Trichomonas vaginalis/ultraestrutura , Peptidase de Processamento Mitocondrial
19.
Arch Microbiol ; 192(3): 195-200, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20107768

RESUMO

In acetohydroxy acid synthase from Streptomyces cinnamonensis mutants affected in valine regulation, the impact of mutations on interactions between the catalytic and the regulatory subunits was examined using yeast two-hybrid system. Mutations in the catalytic and the regulatory subunits were projected into homology models of the respective proteins. Two changes in the catalytic subunit, E139A (alpha domain) and DeltaQ217 (beta domain), both located on the surface of the catalytic subunit dimer, lowered the interaction with the regulatory subunit. Three consecutive changes in the N-terminal part of the regulatory subunit were examined. Changes G16D and V17D in a loop and adjacent alpha-helix of ACT domain affected the interaction considerably, indicating that this region might be in contact with the catalytic subunit during allosteric regulation. In contrast, the adjacent mutation L18F did not influence the interaction at all. Thus, L18 might participate in valine binding or conformational change transfer within the regulatory subunits. Shortening of the regulatory subunit to 107 residues reduced the interaction essentially, suggesting that the C-terminal part of the regulatory subunit is also important for the catalytic subunit binding.


Assuntos
Acetolactato Sintase/química , Acetolactato Sintase/metabolismo , Streptomyces/enzimologia , Valina/metabolismo , Acetolactato Sintase/genética , Regulação Alostérica , Estrutura Secundária de Proteína , Técnicas do Sistema de Duplo-Híbrido
20.
ACS Chem Biol ; 15(8): 2048-2054, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32786288

RESUMO

Lincosamides are clinically important antibiotics originally produced as microbial specialized metabolites. The complex biosynthesis of lincosamides is coupled to the metabolism of mycothiol as a sulfur donor. Here, we elucidated the N-deacetylation of the mycothiol-derived N-acetyl-l-cysteine residue of a lincosamide intermediate, which is comprised of an amino acid and an aminooctose connected via an amide bond. We purified this intermediate from the culture broth of a deletion mutant strain and tested it as a substrate of recombinant lincosamide biosynthetic proteins in the in vitro assays that were monitored via liquid chromatography-mass spectrometry. Our findings showed that the N-deacetylation reaction is catalyzed by CcbIH/CcbQ or LmbIH/LmbQ proteins in celesticetin and lincomycin biosynthesis, respectively. These are the first N-deacetylases from the TldD/PmbA protein family, from which otherwise only several proteases and peptidases were functionally characterized. Furthermore, we present a sequence similarity network of TldD/PmbA proteins, which suggests that the lincosamide N-deacetylases are unique among these widely distributed proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Lincosamidas/biossíntese , Acetilação , Catálise , Bases de Dados de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA