Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Plant Cell ; 36(9): 3237-3259, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38801745

RESUMO

The F-box protein Coronatine Insensitive (COI) is a receptor for the jasmonic acid signaling pathway in plants. To investigate the functions of the 6 maize (Zea mays) COI proteins (COI1a, COI1b, COI1c, COI1d, COI2a, and COI2b), we generated single, double, and quadruple loss-of-function mutants. The pollen of the coi2a coi2b double mutant was inviable. The coi1 quadruple mutant (coi1-4x) exhibited shorter internodes, decreased photosynthesis, leaf discoloration, microelement deficiencies, and accumulation of DWARF8 and/or DWARF9, 2 DELLA family proteins that repress the gibberellic acid (GA) signaling pathway. Coexpression of COI and DELLA in Nicotiana benthamiana showed that the COI proteins trigger proteasome-dependent DELLA degradation. Many genes that are downregulated in the coi1-4x mutant are GA-inducible. In addition, most of the proteins encoded by the downregulated genes are predicted to be bundle sheath- or mesophyll-enriched, including those encoding C4-specific photosynthetic enzymes. Heterologous expression of maize Coi genes in N. benthamiana showed that COI2a is nucleus-localized and interacts with maize jasmonate zinc-finger inflorescence meristem domain (JAZ) proteins, the canonical COI repressor partners. However, maize COI1a and COI1c showed only partial nuclear localization and reduced binding efficiency to the tested JAZ proteins. Together, these results show the divergent functions of the 6 COI proteins in regulating maize growth and defense pathways.


Assuntos
Regulação da Expressão Gênica de Plantas , Fotossíntese , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fotossíntese/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Giberelinas/metabolismo , Mutação , Transdução de Sinais , Oxilipinas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Plantas Geneticamente Modificadas , Ciclopentanos
2.
Plant Cell ; 34(11): 4641-4660, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35972413

RESUMO

Chemical defense systems involving tryptophan-derived secondary metabolites (TDSMs) and salicylic acid (SA) are induced by general nonself signals and pathogen signals, respectively, in Arabidopsis thaliana. Whether and how these chemical defense systems are connected and balanced is largely unknown. In this study, we identified the AVRRPT2-INDUCED GENE2A (AIG2A) and AIG2B genes as gatekeepers that prevent activation of SA defense systems by TDSMs. These genes also were identified as important contributors to natural variation in disease resistance among A. thaliana natural accessions. The loss of AIG2A and AIG2B function leads to upregulation of both SA and TDSM defense systems. Suppressor screens and genetic analysis revealed that a functional TDSM system is required for the upregulation of the SA pathway in the absence of AIG2A and AIG2B, but not vice versa. Furthermore, the AIG2A and AIG2B genes are co-induced with TDSM biosynthesis genes by general pathogen elicitors and nonself signals, thereby functioning as a feedback control of the TDSM defense system, as well as limiting activation of the SA defense system by TDSMs. Thus, this study uncovers an AIG2A- and AIG2B-mediated mechanism that fine-tunes and balances SA and TDSM chemical defense systems in response to nonpathogenic and pathogenic microbes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Resistência à Doença , Doenças das Plantas , Ácido Salicílico , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Ácido Salicílico/metabolismo , Metabolismo Secundário , Triptofano/metabolismo
3.
Plant J ; 114(5): 1164-1177, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36891808

RESUMO

Non-volatile metabolites constitute the bulk of plant biomass. From the perspective of plant-insect interactions, these structurally diverse compounds include nutritious core metabolites and defensive specialized metabolites. In this review, we synthesize the current literature on multiple scales of plant-insect interactions mediated by non-volatile metabolites. At the molecular level, functional genetics studies have revealed a large collection of receptors targeting plant non-volatile metabolites in model insect species and agricultural pests. By contrast, examples of plant receptors of insect-derived molecules remain sparse. For insect herbivores, plant non-volatile metabolites function beyond the dichotomy of core metabolites, classed as nutrients, and specialized metabolites, classed as defensive compounds. Insect feeding tends to elicit evolutionarily conserved changes in plant specialized metabolism, whereas its effect on plant core metabolism varies widely based the interacting species. Finally, several recent studies have demonstrated that non-volatile metabolites can mediate tripartite communication on the community scale, facilitated by physical connections established through direct root-to-root communication, parasitic plants, arbuscular mycorrhizae and the rhizosphere microbiome. Recent advances in both plant and insect molecular biology will facilitate further research on the role of non-volatile metabolites in mediating plant-insect interactions.


Assuntos
Herbivoria , Micorrizas , Animais , Herbivoria/fisiologia , Insetos/fisiologia , Plantas/metabolismo , Rizosfera
4.
New Phytol ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420652

RESUMO

An enormous diversity of specialized metabolites is produced in the plant kingdom, with each individual plant synthesizing thousands of these compounds. Previous research showed that benzoxazinoids, the most abundant class of specialized metabolites in maize, also function as signaling molecules by regulating the production callose as a defense response. We searched for additional benzoxazinoid-regulated specialized metabolites, characterized them, examined whether they too function in herbivore protection, and determined how Spodoptera frugiperda (fall armyworm), a prominent maize pest, copes with these metabolites. We identified catechol acetylglucose (CAG) as a benzoxazinoid-regulated metabolite that is produced from salicylic acid via catechol and catechol glucoside. Genome-wide association studies of CAG abundance identified a gene encoding a predicted acetyltransferase. Knockout of this gene resulted in maize plants that lack CAG and over-accumulate catechol glucoside. Upon tissue disruption, maize plants accumulate catechol, which inhibits S. frugiperda growth. Analysis of caterpillar frass showed that S. frugiperda detoxifies catechol by glycosylation, and the efficiency of catechol glycosylation was correlated with S. frugiperda growth on a catechol-containing diet. Thus, the success of S. frugiperda as an agricultural pest may depend partly on its ability to detoxify catechol, which is produced as a defensive metabolite by maize.

5.
New Phytol ; 242(6): 2719-2733, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38229566

RESUMO

The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well-defended plant lineage impacts interactions with diverse herbivores. Erysimum cheiranthoides (Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model. We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes in E. cheiranthoides and characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. Using E. cheiranthoides cardiac glycoside-deficient lines, we conducted insect experiments in both the laboratory and field. EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side-chain cleavage, and EcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126 knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate-tolerant specialist herbivores, but did not protect against all crucifer-feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores. These results begin elucidation of the E. cheiranthoides cardiac glycoside biosynthetic pathway and demonstrate in vivo that cardiac glycoside production allows Erysimum to escape from some, but not all, specialist herbivores.


Assuntos
Glicosídeos Cardíacos , Erysimum , Glucosinolatos , Herbivoria , Glucosinolatos/metabolismo , Animais , Glicosídeos Cardíacos/farmacologia , Erysimum/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Adaptação Fisiológica/genética , Adaptação Fisiológica/efeitos dos fármacos
6.
Plant Cell Environ ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400373

RESUMO

Plants produce an immense diversity of defensive specialized metabolites. However, despite extensive functional characterization, the relative importance of different defensive compounds is rarely examined in natural settings. Here, we compare the efficacy of three Nicotiana benthamiana defensive compounds, nicotine, acylsugars and a serine protease inhibitor, by growing plants with combinations of knockout mutations in a natural setting, quantifying invertebrate interactions and comparing relative plant performance. Among the three tested compounds, acylsugars had the greatest defensive capacity, affecting aphids, leafhoppers, spiders and flies. Nicotine mutants displayed increased leafhopper feeding and aphid colonization. Plants lacking both nicotine and acylsugars were more susceptible to flea beetles and thrips. By contrast, knockout of the serine protease inhibitor did not affect insect herbivory in the field. Complementary experiments under controlled laboratory conditions with caterpillars, grasshoppers and aphids confirmed results obtained in a natural setting. We conclude that the three metabolite groups collectively provide broad-spectrum protection to N. benthamiana. However, there is a gradient in their effects on the interacting invertebrates present in the field. Furthermore, we demonstrate that, even if individual metabolites do not have a measurable defensive benefit on their own, they can have an additive effect when combined with other defensive compounds.

7.
Plant Cell Environ ; 47(2): 664-681, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37927215

RESUMO

Despite decades of research resulting in a comprehensive understanding of epicuticular wax metabolism, the function of these almost ubiquitous metabolites in plant-herbivore interactions remains unresolved. In this study, we examined the effects of CRISPR-induced knockout mutations in four Nicotiana glauca (tree tobacco) wax metabolism genes. These mutations cause a wide range of changes in epicuticular wax composition, leading to altered interactions with insects and snails. Three interaction classes were examined: chewing herbivory by seven caterpillars and one snail species, phloem feeding by Myzus persicae (green peach aphid) and oviposition by Bemisia tabaci (whitefly). Although total wax load and alkane abundance did not affect caterpillar growth, a correlation across species, showed that fatty alcohols, a minor component of N. glauca surface waxes, negatively affected the growth of both a generalist caterpillar (Spodoptera littoralis) and a tobacco-feeding specialist (Manduca sexta). This negative correlation was overshadowed by the stronger effect of anabasine, a nicotine isomer, and was apparent when fatty alcohols were added to an artificial lepidopteran diet. By contrast, snails fed more on waxy leaves. Aphid reproduction and feeding activity were unaffected by wax composition but were potentially affected by altered cutin composition. Wax crystal morphology could explain the preference of B. tabaci to lay eggs on waxy wild-type plants relative to both alkane and fatty alcohol-deficient mutants. Together, our results suggest that the varied responses among herbivore classes and species are likely to be a consequence of the co-evolution that shaped the specific effects of different surface wax components in plant-herbivore interactions.


Assuntos
Álcoois Graxos , Herbivoria , Animais , Feminino , Herbivoria/fisiologia , Ceras , Alcanos , Produtos do Tabaco
8.
Plant Biotechnol J ; 21(4): 754-768, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36577653

RESUMO

RNA interference (RNAi)-based technologies are starting to be commercialized as a new approach for agricultural pest control. Horizontally transferred genes (HTGs), which have been transferred into insect genomes from viruses, bacteria, fungi or plants, are attractive targets for RNAi-mediated pest control. HTGs are often unique to a specific insect family or even genus, making it unlikely that RNAi constructs targeting such genes will have negative effects on ladybugs, lacewings and other beneficial predatory insect species. In this study, we sequenced the genome of a red, tobacco-adapted isolate of Myzus persicae (green peach aphid) and bioinformatically identified 30 HTGs. We then used plant-mediated virus-induced gene silencing (VIGS) to show that several HTGs of bacterial and plant origin are important for aphid growth and/or survival. Silencing the expression of fungal-origin HTGs did not affect aphid survivorship but decreased aphid reproduction. Importantly, although there was uptake of plant-expressed RNA by Coccinella septempunctata (seven-spotted ladybugs) via the aphids that they consumed, we did not observe negative effects on ladybugs from aphid-targeted VIGS constructs. To demonstrate that this approach is more broadly applicable, we also targeted five Bemisia tabaci (whitefly) HTGs using VIGS and demonstrated that knockdown of some of these genes affected whitefly survival. As functional HTGs have been identified in the genomes of numerous pest species, we propose that these HTGs should be explored further as efficient and safe targets for control of insect pests using plant-mediated RNA interference.


Assuntos
Afídeos , Animais , Afídeos/genética , Interferência de RNA , Plantas Geneticamente Modificadas/genética , Sequência de Bases , Nicotiana/genética
9.
New Phytol ; 237(5): 1574-1589, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36369885

RESUMO

Despite decades of extensive study, the role of cuticular lipids in sustaining plant fitness is far from being understood. We utilized genome-edited tree tobacco (Nicotiana glauca) to investigate the significance of different classes of epicuticular wax in abiotic stress such as cuticular water loss, drought, and light response. We generated mutants displaying a range of wax compositions. Four wax mutants and one cutin mutant were extensively investigated for alterations in their response to abiotic factors. Although the mutations led to elevated cuticular water loss, the wax mutants did not display elevated transpiration or reduced growth under nonstressed conditions. However, under drought, plants lacking alkanes were unable to reduce their transpiration, leading to leaf death, impaired recovery, and stem cracking. By contrast, plants deficient in fatty alcohols exhibited elevated drought tolerance, which was part of a larger trend of plant phenotypes not clustering by a glossy/glaucous appearance in the parameters examined in this study. We conclude that although alkanes have little effect on whole N. glauca transpiration and biomass gain under normal, nonstressed conditions, they are essential during drought responses, since they enable plants to seal their cuticle upon stomatal closure, thereby reducing leaf death and facilitating a speedy recovery.


Assuntos
Secas , Nicotiana , Nicotiana/genética , Nicotiana/metabolismo , Água/metabolismo , Folhas de Planta/fisiologia , Alcanos , Ceras , Regulação da Expressão Gênica de Plantas , Epiderme Vegetal/metabolismo
10.
Plant J ; 106(1): 245-257, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33458870

RESUMO

The maize (Zea mays) genome encodes three indole-3-glycerolphosphate synthase enzymes (IGPS1, 2, and 3) catalyzing the conversion of 1-(2-carboxyphenylamino)-l-deoxyribulose-5-phosphate to indole-3-glycerolphosphate. Three further maize enzymes (BX1, benzoxazinoneless 1; TSA, tryptophan synthase alpha subunit; and IGL, indole glycerolphosphate lyase) convert indole-3-glycerolphosphate to indole, which is released as a volatile defense signaling compound and also serves as a precursor for the biosynthesis of tryptophan and defense-related benzoxazinoids. Phylogenetic analyses showed that IGPS2 is similar to enzymes found in both monocots and dicots, whereas maize IGPS1 and IGPS3 are in monocot-specific clades. Fusions of yellow fluorescent protein with maize IGPS enzymes and indole-3-glycerolphosphate lyases were all localized in chloroplasts. In bimolecular fluorescence complementation assays, IGPS1 interacted strongly with BX1 and IGL, IGPS2 interacted primarily with TSA, and IGPS3 interacted equally with all three indole-3-glycerolphosphate lyases. Whereas IGPS1 and IGPS3 expression was induced by insect feeding, IGPS2 expression was not. Transposon insertions in IGPS1 and IGPS3 reduced the abundance of both benzoxazinoids and free indole. Spodoptera exigua (beet armyworm) larvae show improved growth on igps1 mutant maize plants. Together, these results suggest that IGPS1 and IGPS3 function mainly in the biosynthesis of defensive metabolites, whereas IGPS2 may be involved in the biosynthesis of tryptophan. This metabolic channeling is similar to, though less exclusive than, that proposed for the three maize indole-3-glycerolphosphate lyases.


Assuntos
Benzoxazinas/metabolismo , Indol-3-Glicerolfosfato Sintase/metabolismo , Indóis/metabolismo , Triptofano/metabolismo , Zea mays/metabolismo , Indol-3-Glicerolfosfato Sintase/genética
11.
Plant J ; 106(5): 1401-1413, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33745166

RESUMO

Naringenin, the biochemical precursor for predominant flavonoids in grasses, provides protection against UV damage, pathogen infection and insect feeding. To identify previously unknown loci influencing naringenin accumulation in rice (Oryza sativa), recombinant inbred lines derived from the Nipponbare and IR64 cultivars were used to map a quantitative trait locus (QTL) for naringenin abundance to a region of 50 genes on rice chromosome 7. Examination of candidate genes in the QTL confidence interval identified four predicted uridine diphosphate-dependent glucosyltransferases (Os07g31960, Os07g32010, Os07g32020 and Os07g32060). In vitro assays demonstrated that one of these genes, Os07g32020 (UGT707A3), encodes a glucosyltransferase that converts naringenin and uridine diphosphate-glucose to naringenin-7-O-ß-d-glucoside. The function of Os07g32020 was verified with CRISPR/Cas9 mutant lines, which accumulated more naringenin and less naringenin-7-O-ß-d-glucoside and apigenin-7-O-ß-d-glucoside than wild-type Nipponbare. Expression of Os12g13800, which encodes a naringenin 7-O-methyltransferase that produces sakuranetin, was elevated in the mutant lines after treatment with methyl jasmonate and insect pests, Spodoptera litura (cotton leafworm), Oxya hyla intricata (rice grasshopper) and Nilaparvata lugens (brown planthopper), leading to a higher accumulation of sakuranetin. Feeding damage from O. hyla intricata and N. lugens was reduced on the Os07g32020 mutant lines relative to Nipponbare. Modification of the Os07g32020 gene could be used to increase the production of naringenin and sakuranetin rice flavonoids in a more targeted manner. These findings may open up new opportunities for selective breeding of this important rice metabolic trait.


Assuntos
Flavanonas/metabolismo , Flavonoides/metabolismo , Glucosiltransferases/metabolismo , Gafanhotos/fisiologia , Hemípteros/fisiologia , Oryza/genética , Doenças das Plantas/imunologia , Acetatos/metabolismo , Animais , Mapeamento Cromossômico , Ciclopentanos/metabolismo , Glucosiltransferases/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Oryza/enzimologia , Oryza/imunologia , Oryza/parasitologia , Oxilipinas/metabolismo , Melhoramento Vegetal , Doenças das Plantas/parasitologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética
12.
BMC Genomics ; 23(1): 767, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418948

RESUMO

BACKGROUND: Maize-infecting viruses are known to inflict significant agronomic yield loss throughout the world annually. Identification of known or novel causal agents of disease prior to outbreak is imperative to preserve food security via future crop protection efforts. Toward this goal, a large-scale metagenomic approach utilizing high throughput sequencing (HTS) was employed to identify novel viruses with the potential to contribute to yield loss of graminaceous species, particularly maize, in North America. RESULTS: Here we present four novel viruses discovered by HTS and individually validated by Sanger sequencing. Three of these viruses are RNA viruses belonging to either the Betaflexiviridae or Tombusviridae families. Additionally, a novel DNA virus belonging to the Geminiviridae family was discovered, the first Mastrevirus identified in North American maize. CONCLUSIONS: Metagenomic studies of crop and crop-related species such as this may be useful for the identification and surveillance of known and novel viral pathogens of crops. Monitoring related species may prove useful in identifying viruses capable of infecting crops due to overlapping insect vectors and viral host-range to protect food security.


Assuntos
Geminiviridae , Tombusviridae , Humanos , Zea mays , Metagenômica , Metagenoma , Produtos Agrícolas , Geminiviridae/genética , América do Norte
13.
Plant Mol Biol ; 109(4-5): 533-549, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35020104

RESUMO

KEY MESSAGE: A combined transcriptomic and metabolic analysis of Setaria viridis leaves responding to aphid infestation was used to identify genes related to serotonin biosynthesis. Setaria viridis (green foxtail), a short life-cycle C4 plant in the Poaceae family, is the wild ancestor of Setaria italica (foxtail millet), a resilient crop that provides good yields in dry and marginal land. Although S. viridis has been studied extensively in the last decade, the molecular mechanisms of insect resistance in this species remain under-investigated. To address this issue, we performed a metabolic analysis of S. viridis and discovered that these plants accumulate the tryptophan-derived compounds tryptamine and serotonin. To elucidate the defensive functions of serotonin, Rhophalosiphum padi (bird cherry-oat aphids) were exposed to this compound, either by exogenous application to the plant medium or with artificial diet bioassays. In both cases, exposure to serotonin increased aphid mortality. To identify genes that are involved in serotonin biosynthesis, we conducted a transcriptome analysis and identified several predicted S. viridis tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H) genes. Two candidate genes were ectopically expressed in Nicotiana tabacum, where SvTDC1 (Sevir.6G066200) had tryptophan decarboxylase activity, and SvT5H1 (Sevir.8G219600) had tryptamine hydroxylase activity. Moreover, the function of the SvTDC1 gene was validated using virus-induced gene silencing in S. italica, which caused a reduction in serotonin levels. This study provides the first evidence of serotonin biosynthesis in Setaria leaves. The biosynthesis of serotonin may play an important role in defense responses and could prove to be useful for developing more pest-tolerant Setaria italica cultivars.


Assuntos
Afídeos , Setaria (Planta) , Animais , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Descarboxilases de Aminoácido-L-Aromático/farmacologia , Folhas de Planta/genética , Serotonina/metabolismo , Serotonina/farmacologia , Setaria (Planta)/genética
14.
Plant Mol Biol ; 109(4-5): 369-383, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33783685

RESUMO

Phenolic sucrose esters (PSEs) are a diverse group of specialized metabolites that are present in several angiosperm lineages. Phylogenetic reconstruction and structural variation suggest that these metabolites may have evolved independently in monocots and dicots. Constitutive variation in PSE abundance across plant organs and developmental stages is correlated with transcriptional regulation of the upstream phenylpropanoid pathway, whereas pathogen induction is regulated by stress-related phytohormones such as ethylene. Shared structural features of PSEs indicate that their biosynthesis may involve one or more hydroxycinnamoyl transferases and BAHD acetyltransferases, which could be identified by correlative analyses of multi-omics datasets. Elucidation of the core biosynthetic pathway of PSEs will be essential for more detailed studies of the biological function of these compounds and their potential medicinal and agricultural applications.


Assuntos
Ésteres , Sacarose , Vias Biossintéticas , Ésteres/metabolismo , Filogenia , Plantas/genética , Plantas/metabolismo , Sacarose/metabolismo
15.
Plant Mol Biol ; 109(4-5): 505-522, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34586580

RESUMO

KEY MESSAGE: Nicotiana benthamiana acylsugar acyltransferase (ASAT) is required for protection against desiccation and insect herbivory. Knockout mutations provide a new resource for investigation of plant-aphid and plant-whitefly interactions. Nicotiana benthamiana is used extensively as a transient expression platform for functional analysis of genes from other species. Acylsugars, which are produced in the trichomes, are a hypothesized cause of the relatively high insect resistance that is observed in N. benthamiana. We characterized the N. benthamiana acylsugar profile, bioinformatically identified two acylsugar acyltransferase genes, ASAT1 and ASAT2, and used CRISPR/Cas9 mutagenesis to produce acylsugar-deficient plants for investigation of insect resistance and foliar water loss. Whereas asat1 mutations reduced accumulation, asat2 mutations caused almost complete depletion of foliar acylsucroses. Three hemipteran and three lepidopteran herbivores survived, gained weight, and/or reproduced significantly better on asat2 mutants than on wildtype N. benthamiana. Both asat1 and asat2 mutations reduced the water content and increased leaf temperature. Our results demonstrate the specific function of two ASAT proteins in N. benthamiana acylsugar biosynthesis, insect resistance, and desiccation tolerance. The improved growth of aphids and whiteflies on asat2 mutants will facilitate the use of N. benthamiana as a transient expression platform for the functional analysis of insect effectors and resistance genes from other plant species. Similarly, the absence of acylsugars in asat2 mutants will enable analysis of acylsugar biosynthesis genes from other Solanaceae by transient expression.


Assuntos
Hemípteros , Nicotiana , Aciltransferases/metabolismo , Animais , Dessecação , Herbivoria , Insetos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Água
16.
J Exp Bot ; 73(2): 449-462, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34581787

RESUMO

Plant-derived volatile organic compounds (VOCs) play pivotal roles in interactions with insect herbivores. Individual VOCs can be directly toxic or deterrent, serve as signal molecules to attract natural enemies, and/or be perceived by distal plant tissues as a priming signal to prepare for expected herbivory. Environmental conditions, as well as the specific plant-insect interaction being investigated, strongly influence the observed functions of VOC blends. The complexity of plant-insect chemical communication via VOCs is further enriched by the sophisticated molecular perception mechanisms of insects, which can respond to one or more VOCs and thereby influence insect behavior in a manner that has yet to be fully elucidated. Despite numerous gaps in the current understanding of VOC-mediated plant-insect interactions, successful pest management strategies such as push-pull systems, synthetic odorant traps, and crop cultivars with modified VOC profiles have been developed to supplement chemical pesticide applications and enable more sustainable agricultural practices. Future studies in this field would benefit from examining the responses of both plants and insects in the same experiment to gain a more complete view of these interactive systems. Furthermore, a molecular evolutionary study of key genetic elements of the ecological interaction phenotypes could provide new insights into VOC-mediated plant communication with insect herbivores.


Assuntos
Herbivoria , Compostos Orgânicos Voláteis , Animais , Insetos , Plantas
17.
Plant Cell ; 31(5): 937-955, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30923231

RESUMO

Cultivated maize (Zea mays) has retained much of the genetic diversity of its wild ancestors. Here, we performed nontargeted liquid chromatography-mass spectrometry metabolomics to analyze the metabolomes of the 282 maize inbred lines in the Goodman Diversity Panel. This analysis identified a bimodal distribution of foliar metabolites. Although 15% of the detected mass features were present in >90% of the inbred lines, the majority were found in <50% of the samples. Whereas leaf bases and tips were differentiated by flavonoid abundance, maize varieties (stiff-stalk, nonstiff-stalk, tropical, sweet maize, and popcorn) showed differential accumulation of benzoxazinoid metabolites. Genome-wide association studies (GWAS), performed for 3,991 mass features from the leaf tips and leaf bases, showed that 90% have multiple significantly associated loci scattered across the genome. Several quantitative trait locus hotspots in the maize genome regulate the abundance of multiple, often structurally related mass features. The utility of maize metabolite GWAS was demonstrated by confirming known benzoxazinoid biosynthesis genes, as well as by mapping isomeric variation in the accumulation of phenylpropanoid hydroxycitric acid esters to a single linkage block in a citrate synthase-like gene. Similar to gene expression databases, this metabolomic GWAS data set constitutes an important public resource for linking maize metabolites with biosynthetic and regulatory genes.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Variação Genética , Estudo de Associação Genômica Ampla , Metaboloma , Zea mays/genética , Metabolômica , Fenótipo , Locos de Características Quantitativas/genética , Zea mays/química , Zea mays/metabolismo
18.
Plant J ; 101(5): 1103-1117, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31630460

RESUMO

Phytoalexins play a pivotal role in plant-pathogen interactions. Whereas leaves of rice (Oryza sativa) cultivar Nipponbare predominantly accumulated the phytoalexin sakuranetin after jasmonic acid induction, only very low amounts accumulated in the Kasalath cultivar. Sakuranetin is synthesized from naringenin by naringenin 7-O-methyltransferase (NOMT). Analysis of chromosome segment substitution lines and backcrossed inbred lines suggested that NOMT is the underlying cause of differential phytoalexin accumulation between Nipponbare and Kasalath. Indeed, both NOMT expression and NOMT enzymatic activity are lower in Kasalath than in Nipponbare. We identified a proline to threonine substitution in Kasalath relative to Nipponbare NOMT as the main cause of the lower enzymatic activity. Expanding this analysis to rice cultivars with varying amounts of sakuranetin collected from around the world showed that NOMT induction is correlated with sakuranetin accumulation. In bioassays with Pyricularia oryzae, Gibberella fujikuroi, Bipolaris oryzae, Burkholderia glumae, Xanthomonas oryzae, Erwinia chrysanthemi, Pseudomonas syringae, and Acidovorax avenae, naringenin was more effective against bacterial pathogens and sakuranetin was more effective against fungal pathogens. Therefore, the relative amounts of naringenin and sakuranetin may provide protection against specific pathogen profiles in different rice-growing environments. In a dendrogram of NOMT genes, those from low-sakuranetin-accumulating cultivars formed at least two clusters, only one of which involves the proline to threonine mutation, suggesting that the low sakuranetin chemotype was acquired more than once in cultivated rice. Strains of the wild rice species Oryza rufipogon also exhibited differential sakuranetin accumulation, indicating that this metabolic diversity predates rice domestication.


Assuntos
Antifúngicos/farmacologia , Ciclopentanos/metabolismo , Flavonoides/metabolismo , Metiltransferases/genética , Oryza/enzimologia , Oxilipinas/metabolismo , Doenças das Plantas/imunologia , Ascomicetos/efeitos dos fármacos , Burkholderia/efeitos dos fármacos , Comamonadaceae/efeitos dos fármacos , Flavanonas/metabolismo , Fusarium/efeitos dos fármacos , Variação Genética , Metiltransferases/metabolismo , Oryza/genética , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/efeitos dos fármacos
19.
Plant Biotechnol J ; 19(9): 1713-1724, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33763921

RESUMO

Spodoptera frugiperda (fall armyworm) is a notorious pest that threatens maize production worldwide. Current control measures involve the use of chemical insecticides and transgenic maize expressing Bacillus thuringiensis (Bt) toxins. Although additional transgenes have confirmed insecticidal activity, limited research has been conducted in maize, at least partially due to the technical difficulty of maize transformation. Here, we describe implementation of a sugarcane mosaic virus (SCMV) vector for rapidly testing the efficacy of both endogenous maize genes and heterologous genes from other organisms for the control of S. frugiperda in maize. Four categories of proteins were tested using the SCMV vector: (i) maize defence signalling proteins: peptide elicitors (Pep1 and Pep3) and jasmonate acid conjugating enzymes (JAR1a and JAR1b); (ii) maize defensive proteins: the previously identified ribosome-inactivating protein (RIP2) and maize proteinase inhibitor (MPI), and two proteins with predicted but unconfirmed anti-insect activities, an antimicrobial peptide (AMP) and a lectin (JAC1); (iii) lectins from other plant species: Allium cepa agglutinin (ACA) and Galanthus nivalis agglutinin (GNA); and (iv) scorpion and spider toxins: peptides from Urodacus yaschenkoi (UyCT3 and UyCT5) and Hadronyche versuta (Hvt). In most cases, S. frugiperda larval growth was reduced by transient SCMV-mediated overexpression of genes encoding these proteins. Additionally, experiments with a subset of the SCMV-expressed genes showed effectiveness against two aphid species, Rhopalosiphum maidis (corn leaf aphid) and Myzus persicae (green peach aphid). Together, these results demonstrate that SCMV vectors are a rapid screening method for testing the efficacy and insecticidal activity of candidate genes in maize.


Assuntos
Endotoxinas , Proteínas Hemolisinas , Controle de Insetos/métodos , Animais , Proteínas de Bactérias/genética , Proteínas Hemolisinas/genética , Herbivoria , Plantas Geneticamente Modificadas/genética , Potyvirus , Spodoptera , Zea mays/genética
20.
Plant Physiol ; 179(4): 1402-1415, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30643012

RESUMO

The corn leaf aphid (CLA; Rhopalosiphum maidis) is a phloem sap-sucking insect that attacks many cereal crops, including maize (Zea mays). We previously showed that the maize inbred line Mp708, which was developed by classical plant breeding, provides enhanced resistance to CLA. Here, using electrophysiological monitoring of aphid feeding behavior, we demonstrate that Mp708 provides phloem-mediated resistance to CLA. Furthermore, feeding by CLA on Mp708 plants enhanced callose deposition, a potential defense mechanism utilized by plants to limit aphid feeding and subsequent colonization. In maize, benzoxazinoids (BX) or BX-derived metabolites contribute to enhanced callose deposition by providing heightened resistance to CLA. However, BX and BX-derived metabolites were not significantly altered in CLA-infested Mp708 plants, indicating BX-independent defense against CLA. Evidence presented here suggests that the constitutively higher levels of 12-oxo-phytodienoic acid (OPDA) in Mp708 plants contributed to enhanced callose accumulation and heightened CLA resistance. OPDA enhanced the expression of ethylene biosynthesis and receptor genes, and the synergistic interactions of OPDA and CLA feeding significantly induced the expression of the transcripts encoding Maize insect resistance1-Cysteine Protease, a key defensive protein against insect pests, in Mp708 plants. Furthermore, exogenous application of OPDA on maize jasmonic acid-deficient plants caused enhanced callose accumulation and heightened resistance to CLA, suggesting that the OPDA-mediated resistance to CLA is independent of the jasmonic acid pathway. We further demonstrate that the signaling function of OPDA, rather than a direct toxic effect, contributes to enhanced CLA resistance in Mp708.


Assuntos
Afídeos/fisiologia , Ácidos Graxos Insaturados/fisiologia , Glucanos/metabolismo , Zea mays/fisiologia , Acetatos , Animais , Benzoxazinas/metabolismo , Ciclopentanos , Etilenos/biossíntese , Fertilidade , Herbivoria , Oxilipinas , Floema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA