Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 125(22): 3484-90, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25788700

RESUMO

Ticagrelor is a direct-acting reversibly binding P2Y12 antagonist and is widely used as an antiplatelet therapy for the prevention of cardiovascular events in acute coronary syndrome patients. However, antiplatelet therapy can be associated with an increased risk of bleeding. Here, we present data on the identification and the in vitro and in vivo pharmacology of an antigen-binding fragment (Fab) antidote for ticagrelor. The Fab has a 20 pM affinity for ticagrelor, which is 100 times stronger than ticagrelor's affinity for its target, P2Y12. Despite ticagrelor's structural similarities to adenosine, the Fab is highly specific and does not bind to adenosine, adenosine triphosphate, adenosine 5'-diphosphate, or structurally related drugs. The antidote concentration-dependently neutralized the free fraction of ticagrelor and reversed its antiplatelet activity both in vitro in human platelet-rich plasma and in vivo in mice. Lastly, the antidote proved effective in normalizing ticagrelor-dependent bleeding in a mouse model of acute surgery. This specific antidote for ticagrelor may prove valuable as an agent for patients who require emergency procedures.


Assuntos
Adenosina/análogos & derivados , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/farmacologia , Antídotos/química , Antídotos/farmacologia , Adenosina/antagonistas & inibidores , Adenosina/imunologia , Animais , Anticorpos/isolamento & purificação , Anticorpos/metabolismo , Especificidade de Anticorpos , Anticorpos Amplamente Neutralizantes , Células CHO , Cricetinae , Cricetulus , Cristalografia por Raios X , Hemorragia/prevenção & controle , Humanos , Fragmentos Fab das Imunoglobulinas/farmacologia , Camundongos , Modelos Moleculares , Agregação Plaquetária/efeitos dos fármacos , Engenharia de Proteínas , Ticagrelor
2.
Drug Metab Dispos ; 44(4): 527-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26851239

RESUMO

A key requirement in drug discovery is to accurately define intrinsic clearance (CL(int)) values of less than 1 µl/min/10(6) hepatocytes, which requires assays that allow for longer incubation time as a complement to suspended hepatocytes. This study assessed the effectiveness of plated HepaRG cells, plated primary human hepatocytes (PHHs), and the HµREL human hepatocyte/stromal cell co-cultures for determination of low CL(int) values. The investigation demonstrated that the systems were capable of providing statistically significant CL(int) estimations down to 0.2 µl/min/10(6) cells. The HµREL assay provided a higher level of reproducibility, with repeat significant CL(int) values being defined in a minimum of triplicate consecutive assays for six of seven of the low CL(int) compounds compared with four of seven for PHHs and two of seven for HepaRG. The assays were also compared with a suspension assay using drugs with higher CL(int) values and diverse enzymology. The CL(int) values from the PHH and HµREL assays were similar to those defined by a hepatocyte suspension assay, indicating that they can be used interchangeably alongside a standard assay. Finally, data from these two assays could also predict in vivo hepatic metabolic CL(int) to within 3-fold for greater than 70% of the compounds tested, with average fold errors (AFE) of 1.6 and 2.3, respectively, whereas the HepaRG data were predictive to within 3-fold for only 50% of compounds (AFE 2.9). In summary, all systems have utility for low CL(int) determination, but the HµREL co-culture appears slightly superior regarding overall assay performance.


Assuntos
Hepatócitos/metabolismo , Taxa de Depuração Metabólica/fisiologia , Preparações Farmacêuticas/metabolismo , Técnicas de Cocultura , Feminino , Humanos , Masculino , Células Estromais/metabolismo
3.
Drug Metab Dispos ; 43(1): 119-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25371393

RESUMO

The suppression of hepatic cytochrome P450 (P450) expression during inflammatory and infectious diseases and the relief of this suppression by successful disease treatment have been previously demonstrated to impact drug disposition. To address this clinically relevant phenomenon preclinically, the effect of proinflammatory cytokines on P450 isoenzymes in human hepatocytes has been examined by several researchers. In the present study we used the human hepatoma cell line (HepaRG) and cryopreserved primary human hepatocytes to investigate the effects of various inflammatory stimuli on P450 levels with the aim of further characterizing HepaRG cells as a useful surrogate for primary hepatocytes. In this study, HepaRG cells were exposed to bacterial lipopolysaccharide (LPS), interleukin-6 (IL-6), and interleukin-18 (IL-18) for 48 or 72 hours. The effects on CYP1A2, CYP2B6, and CYP3A4 mRNA and catalytic activity (phenacetin-O-deethylase, bupropion-hydroxylase, and midazolam-1'-hydroxylase) were measured. Cryopreserved pooled plateable hepatocytes were also exposed to IL-6 or IL-18 for 48 hours, and the effects on CYP1A2, CYP2B6, and CYP3A4 mRNA levels were measured. The exposure of HepaRG cells to IL-6 and LPS resulted in suppression of CYP1A2, CYP2B6, and CYP3A4 mRNA levels as well as their catalytic activities. However, no suppression of P450 activities or mRNA levels was observed after exposure to IL-18. Similar results on CYP1A2, CYP2B6, and CYP3A4 mRNA levels were observed with primary hepatocytes. The present study indicates that different proinflammatory mediators influence the expression of P450 differentially and that HepaRG cells may be used as an alternative to human hepatocytes for studies on cytokine-mediated suppression of drug-metabolizing enzymes.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Inflamação/metabolismo , Isoenzimas/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Hepatócitos/metabolismo , Humanos , Interleucina-18/metabolismo , Interleucina-6/metabolismo , Neoplasias Hepáticas/metabolismo , RNA Mensageiro/metabolismo
4.
J Pharm Sci ; 110(1): 422-431, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122050

RESUMO

3D cultures of primary human hepatocytes (PHH) are emerging as a more in vivo-like culture system than previously available hepatic models. This work describes the characterisation of drug metabolism in 3D PHH spheroids. Spheroids were formed from three different donors of PHH and the expression and activities of important cytochrome P450 enzymes (CYP1A2, 2B6, 2C9, 2D6, and 3A4) were maintained for up to 21 days after seeding. The activity of CYP2B6 and 3A4 decreased, while the activity of CYP2C9 and 2D6 increased over time (P < 0.05). For six test compounds, that are metabolised by multiple enzymes, intrinsic clearance (CLint) values were comparable to standard in vitro hepatic models and successfully predicted in vivo CLint within 3-fold from observed values for low clearance compounds. Remarkably, the metabolic turnover of these low clearance compounds was reproducibly measured using only 1-3 spheroids, each composed of 2000 cells. Importantly, metabolites identified in the spheroid cultures reproduced the major metabolites observed in vivo, both primary and secondary metabolites were captured. In summary, the 3D PHH spheroid model shows promise to be used in drug discovery projects to study drug metabolism, including unknown mechanisms, over an extended period of time.


Assuntos
Sistema Enzimático do Citocromo P-450 , Hepatócitos , Sistema Enzimático do Citocromo P-450/metabolismo , Avaliação de Medicamentos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Taxa de Depuração Metabólica
5.
Clin Cancer Res ; 27(1): 189-201, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028591

RESUMO

PURPOSE: Osimertinib is a potent and selective EGFR tyrosine kinase inhibitor (EGFR-TKI) of both sensitizing and T790M resistance mutations. To treat metastatic brain disease, blood-brain barrier (BBB) permeability is considered desirable for increasing clinical efficacy. EXPERIMENTAL DESIGN: We examined the level of brain penetration for 16 irreversible and reversible EGFR-TKIs using multiple in vitro and in vivo BBB preclinical models. RESULTS: In vitro osimertinib was the weakest substrate for human BBB efflux transporters (efflux ratio 3.2). In vivo rat free brain to free plasma ratios (Kpuu) show osimertinib has the most BBB penetrance (0.21), compared with the other TKIs (Kpuu ≤ 0.12). PET imaging in Cynomolgus macaques demonstrated osimertinib was the only TKI among those tested to achieve significant brain penetrance (C max %ID 1.5, brain/blood Kp 2.6). Desorption electrospray ionization mass spectroscopy images of brains from mouse PC9 macrometastases models showed osimertinib readily distributes across both healthy brain and tumor tissue. Comparison of osimertinib with the poorly BBB penetrant afatinib in a mouse PC9 model of subclinical brain metastases showed only osimertinib has a significant effect on rate of brain tumor growth. CONCLUSIONS: These preclinical studies indicate that osimertinib can achieve significant exposure in the brain compared with the other EGFR-TKIs tested and supports the ongoing clinical evaluation of osimertinib for the treatment of EGFR-mutant brain metastasis. This work also demonstrates the link between low in vitro transporter efflux ratios and increased brain penetrance in vivo supporting the use of in vitro transporter assays as an early screen in drug discovery.


Assuntos
Acrilamidas/farmacocinética , Compostos de Anilina/farmacocinética , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacocinética , Acrilamidas/administração & dosagem , Compostos de Anilina/administração & dosagem , Animais , Neoplasias Encefálicas/secundário , Cães , Receptores ErbB/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/patologia , Macaca fascicularis , Células Madin Darby de Rim Canino , Masculino , Camundongos , Permeabilidade , Inibidores de Proteínas Quinases/administração & dosagem , Ratos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Sci Rep ; 9(1): 11585, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406127

RESUMO

There is a high unmet need for developing treatments for nonalcoholic fatty liver disease (NAFLD), for which there are no approved drugs today. Here, we used a human in vitro disease model to understand mechanisms linked to genetic risk variants associated with NAFLD. The model is based on 3D spheroids from primary human hepatocytes from five different donors. Across these donors, we observed highly reproducible differences in the extent of steatosis induction, demonstrating that inter-donor variability is reflected in the in vitro model. Importantly, our data indicates that the genetic variant TM6SF2 E167K, previously associated with increased risk for NAFLD, induces increased hepatocyte fat content by reducing APOB particle secretion. Finally, differences in gene expression pathways involved in cholesterol, fatty acid and glucose metabolism between wild type and TM6SF2 E167K mutation carriers (N = 125) were confirmed in the in vitro model. Our data suggest that the 3D in vitro spheroids can be used to investigate the mechanisms underlying the association of human genetic variants associated with NAFLD. This model may also be suitable to discover new treatments against NAFLD.


Assuntos
Apolipoproteínas B/metabolismo , Lipídeos/biossíntese , Proteínas de Membrana/genética , Mutação , Humanos
7.
PLoS One ; 13(7): e0201202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30048515

RESUMO

Ticagrelor, a P2Y12 antagonist, is approved for prevention of thromboembolic events. MEDI2452 is a potential reversal agent for ticagrelor and ticagrelor active metabolite (TAM). The total plasma exposure of ticagrelor and TAM in patients are roughly 0.5-1 and 0.2-0.5 µmol/L, respectively. Both have similar high potency vs. P2Y12 (Ki 2 nmol/L) but are plasma protein-bound to 99.8% and only the 0.2% free fraction is able to inhibit the P2Y12 receptor. Thus, for unbound concentration measurements to be a proof of mechanism biomarker for MEDI2452 a very high sensitivity is required. Using established techniques as equilibrium dialysis and LC-MS/MS, made it possible to evaluate the efficacy of the reversal agent by measuring reduction of unbound concentration of ticagrelor in the presence of MEDI2452. With challenges such as ultra-low concentrations, small sample volumes, recovery issues and adsorption to plastic we managed to develop a highly sensitive assay for determining unbound concentration levels of ticagrelor and TAM in plasma with a quantification limit of 30 pmol/L and 45 pmol/L, respectively. With this method we were able to detect close to a 100-fold MEDI2452 mediated reduction in the unbound concentration of both ticagrelor and TAM. The assay provided proof of mechanism as MEDI2452 concentration- and dose-dependently eliminated unbound concentration of ticagrelor and reversed its antiplatelet activity in preclinical models and will support future development of MEDI2452.


Assuntos
Anticorpos Neutralizantes/sangue , Antídotos , Análise Química do Sangue , Inibidores da Agregação Plaquetária/sangue , Antagonistas do Receptor Purinérgico P2Y/sangue , Ticagrelor/sangue , Animais , Anticorpos Neutralizantes/farmacologia , Antídotos/farmacologia , Coleta de Amostras Sanguíneas , Anticorpos Amplamente Neutralizantes , Cromatografia Líquida , Diálise , Relação Dose-Resposta a Droga , Humanos , Espectrometria de Massas , Camundongos , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Sus scrofa , Ticagrelor/farmacologia
8.
Sci Adv ; 4(6): eaat1719, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29938225

RESUMO

Poor survival rates of patients with tumors arising from or disseminating into the brain are attributed to an inability to excise all tumor tissue (if operable), a lack of blood-brain barrier (BBB) penetration of chemotherapies/targeted agents, and an intrinsic tumor radio-/chemo-resistance. Ataxia-telangiectasia mutated (ATM) protein orchestrates the cellular DNA damage response (DDR) to cytotoxic DNA double-strand breaks induced by ionizing radiation (IR). ATM genetic ablation or pharmacological inhibition results in tumor cell hypersensitivity to IR. We report the primary pharmacology of the clinical-grade, exquisitely potent (cell IC50, 0.78 nM), highly selective [>10,000-fold over kinases within the same phosphatidylinositol 3-kinase-related kinase (PIKK) family], orally bioavailable ATM inhibitor AZD1390 specifically optimized for BBB penetration confirmed in cynomolgus monkey brain positron emission tomography (PET) imaging of microdosed 11C-labeled AZD1390 (Kp,uu, 0.33). AZD1390 blocks ATM-dependent DDR pathway activity and combines with radiation to induce G2 cell cycle phase accumulation, micronuclei, and apoptosis. AZD1390 radiosensitizes glioma and lung cancer cell lines, with p53 mutant glioma cells generally being more radiosensitized than wild type. In in vivo syngeneic and patient-derived glioma as well as orthotopic lung-brain metastatic models, AZD1390 dosed in combination with daily fractions of IR (whole-brain or stereotactic radiotherapy) significantly induced tumor regressions and increased animal survival compared to IR treatment alone. We established a pharmacokinetic-pharmacodynamic-efficacy relationship by correlating free brain concentrations, tumor phospho-ATM/phospho-Rad50 inhibition, apoptotic biomarker (cleaved caspase-3) induction, tumor regression, and survival. On the basis of the data presented here, AZD1390 is now in early clinical development for use as a radiosensitizer in central nervous system malignancies.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Inibidores de Proteínas Quinases/farmacologia , Radiossensibilizantes/farmacologia , Animais , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Camundongos , Fosforilação , Inibidores de Proteínas Quinases/química , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/química , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
9.
ACS Med Chem Lett ; 4(12): 1163-8, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24900623

RESUMO

Agonists of vasoactive intestinal peptide receptor 2 (VPAC2) stimulate glucose-dependent insulin secretion, making them attractive candidates for the treatment of hyperglycaemia and type-II diabetes. Vasoactive intestinal peptide (VIP) is an endogenous peptide hormone that potently agonizes VPAC2. However, VIP has a short serum half-life and poor pharmacokinetics in vivo and is susceptible to proteolytic degradation, making its development as a therapeutic agent challenging. Here, we investigated two peptide cyclization strategies, lactamisation and olefin-metathesis stapling, and their effects on VPAC2 agonism, peptide secondary structure, protease stability, and cell membrane permeability. VIP analogues showing significantly enhanced VPAC2 agonist potency, glucose-dependent insulin secretion activity, and increased helical content were discovered; however, neither cyclization strategy appeared to effect proteolytic stability or cell permeability of the resulting peptides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA