Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(12): 6927-6943, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36942998

RESUMO

Electrochemical partial oxidation of methane to methanol is a promising approach to the transformation of stranded methane resources into a high-value, easy-to-transport fuel or chemical. Transition metal oxides are potential electrocatalysts for this transformation. However, a comprehensive and systematic study of the dependence of methane activation rates and methanol selectivity on catalyst morphology and experimental operating parameters has not been realized. Here, we describe an electrochemical method for the deposition of a family of thin-film transition metal (oxy)hydroxides as catalysts for the partial oxidation of methane. CoOx, NiOx, MnOx, and CuOx are discovered to be active for the partial oxidation of methane to methanol. Taking CoOx as a prototypical methane partial oxidation electrocatalyst, we systematically study the dependence of activity and methanol selectivity on catalyst film thickness, overpotential, temperature, and electrochemical cell hydrodynamics. Optimal conditions of low catalyst film thickness, intermediate overpotentials, intermediate temperatures, and fast methanol transport are identified to favor methanol selectivity. Through a combination of control experiments and DFT calculations, we show that the oxidized form of the as-deposited (oxy)hydroxide catalyst films are active for the thermal oxidation of methane to methanol even without the application of bias potential, demonstrating that high valence transition metal oxides are intrinsically active for the activation and oxidation of methane to methanol at ambient temperatures. Calculations uncover that electrocatalytic oxidation enables reaching an optimum potential window in which methane activation forming methanol and methanol desorption are both thermodynamically favorable, methanol desorption being favored by competitive adsorption with hydroxide anion.

2.
iScience ; 26(6): 106966, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37378322

RESUMO

As renewable electricity becomes cost competitive with fossil fuel energy sources and environmental concerns increase, the transition to electrified chemical and fuel synthesis pathways becomes increasingly desirable. However, electrochemical systems have traditionally taken many decades to reach commercial scales. Difficulty in scaling up electrochemical synthesis processes comes primarily from difficulty in decoupling and controlling simultaneously the effects of intrinsic kinetics and charge, heat, and mass transport within electrochemical reactors. Tackling this issue efficiently requires a shift in research from an approach based on small datasets, to one where digitalization enables rapid collection and interpretation of large, well-parameterized datasets, using artificial intelligence (AI) and multi-scale modeling. In this perspective, we present an emerging research approach that is inspired by smart manufacturing (SM), to accelerate research, development, and scale-up of electrified chemical manufacturing processes. The value of this approach is demonstrated by its application toward the development of CO2 electrolyzers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA