Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 195: 113649, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555637

RESUMO

Considering the worldwide health crisis associated with highly contagious severe respiratory disease of COVID-19 outbreak, the development of multiplexed, simple and rapid diagnostic platforms to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is in high demand. Here, a nucleic acid amplification-free electrochemical biosensor based on four-way junction (4-WJ) hybridization is presented for the detection of SARS-CoV-2. To form a 4-WJ structure, a Universal DNA-Hairpin (UDH) probe is hybridized with two adaptor strands and a SARS-CoV-2 RNA target. One of the adaptor strands is functionalized with a redox mediator that can be detected using an electrochemical biosensor. The biosensor could simultaneously detect 5.0 and 6.8 ag/µL of S and Orf1ab genes, respectively, within 1 h. The biosensor was evaluated with 21 clinical samples (16 positive and 5 negative). The results revealed a satisfactory agreement with qRT-PCR. In conclusion, this biosensor has the potential to be used as an on-site, real-time diagnostic test for COVID-19.


Assuntos
Técnicas Biossensoriais , COVID-19 , Testes Diagnósticos de Rotina , Humanos , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/genética , SARS-CoV-2 , Sensibilidade e Especificidade
2.
Cell Rep Phys Sci ; 3(4): 100813, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35309284

RESUMO

Effective mitigation technology to prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is required before achieving population immunity through vaccines. Here we demonstrate a virus-blocking textile (VBT) that repulses SARS-CoV-2 by applying repulsive Coulomb force to respiratory particles, powered by human body triboelectric energy harvesting. We show that SARS-CoV-2 has negative charges, and a human body generates high output current of which peak-to-peak value reaches 259.6 µA at most, based on triboelectric effect. Thereby, the human body can sustainably power a VBT to have negative electrical potential, and the VBT highly blocks SARS-CoV-2 by repulsion. In an acrylic chamber study, we found that the VBT blocks SARS-CoV-2 by 99.95%, and SARS-CoV-2 in the VBT is 13-fold reduced. Our work provides technology that may prevent the spread of virus based on repulsive Coulomb force and triboelectric energy harvesting.

3.
Cell Rep ; 37(1): 109798, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34587481

RESUMO

Despite the worldwide effect of the coronavirus disease 2019 (COVID-19) pandemic, the underlying mechanisms of fatal viral pneumonia remain elusive. Here, we show that critical COVID-19 is associated with enhanced eosinophil-mediated inflammation when compared to non-critical cases. In addition, we confirm increased T helper (Th)2-biased adaptive immune responses, accompanying overt complement activation, in the critical group. Moreover, enhanced antibody responses and complement activation are associated with disease pathogenesis as evidenced by formation of immune complexes and membrane attack complexes in airways and vasculature of lung biopsies from six fatal cases, as well as by enhanced hallmark gene set signatures of Fcγ receptor (FcγR) signaling and complement activation in myeloid cells of respiratory specimens from critical COVID-19 patients. These results suggest that SARS-CoV-2 infection may drive specific innate immune responses, including eosinophil-mediated inflammation, and subsequent pulmonary pathogenesis via enhanced Th2-biased immune responses, which might be crucial drivers of critical disease in COVID-19 patients.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Proteínas do Sistema Complemento/imunologia , Eosinófilos/imunologia , Inflamação/imunologia , Pneumonia Viral/imunologia , SARS-CoV-2/imunologia , Imunidade Adaptativa , Adulto , Idoso , Idoso de 80 Anos ou mais , Complexo Antígeno-Anticorpo/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Ativação do Complemento , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Eosinófilos/virologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/virologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/patologia , Lesão Pulmonar/virologia , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/metabolismo , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Células Th2/imunologia , Carga Viral , Adulto Jovem
4.
Biomaterials ; 226: 119543, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634653

RESUMO

Inflammasome plays a critical role in diverse inflammatory disorders, including cancers and Alzheimer's disease. It is induced by various pathogenic insults and activates caspase-1, a hallmark executor of inflammasome. Here, we developed an activatable fluorescence probe for visualization of active caspase-1. This caspase-1 probe is biocompatible, efficiently delivered into cells and tissues, and specifically emits fluorescence upon caspase-1 activation as assessed in in vitro and in vivo models of inflammatory conditions. We demonstrated efficient in vivo imaging of caspase-1 activation in early stages of various inflammatory conditions of mice models, including endotoxin shock, inflammatory bowel disorder, transplanted cancer, and Alzheimer's disease. Notably, the caspase-1 probe enables detection of neuroinflammation in vivo two months earlier than cognitive impairments occur in Alzheimer's disease model. We detected significant fluorescence emitted from inflamed sites, as well as their draining lymph nodes, by macroscopic imaging analysis within 30 min after systemic injection of the probe. This novel synthetic probe could be applied for efficient and rapid detection of caspase-1 activity in a spatiotemporal way by non-invasive imaging.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Animais , Caspase 1/metabolismo , Caspases/metabolismo , Inflamassomos/metabolismo , Camundongos , Proteólise
5.
Pharmaceutics ; 11(10)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561470

RESUMO

Engineering and application of nanomaterials have recently helped advance various biomedical fields. Zinc oxide (ZnO)-based nanocomposites have become one of the most promising candidates for biomedical applications due to their biocompatibility, unique physicochemical properties, and cost-effective mass production. In addition, recent advances in nano-engineering technologies enable the generation of ZnO nanocomposites with unique three-dimensional structures and surface characteristics that are optimally designed for in vivo applications. Here, we review recent advances in the application of diverse ZnO nanocomposites, with an especial focus on their development as vaccine adjuvant and cancer immunotherapeutics, as well as their intrinsic properties interacting with the immune system and potential toxic effect in vivo. Finally, we summarize promising proof-of-concept applications as prophylactic and therapeutic vaccines against infections and cancers. Understanding the nano-bio interfaces between ZnO-based nanocomposites and the immune system, together with bio-effective design of the nanomaterial using nano-architectonic technology, may open new avenues in expanding the biomedical application of ZnO nanocomposites as a novel vaccine platform.

6.
Nanoscale ; 11(10): 4591-4600, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30809611

RESUMO

Zinc oxide (ZnO)-based nanocomposites have shown promising potential for various biomedical applications, including vaccine development, owing to their multifunctionality and biocompatibility. Here, we synthesized radially grown ZnO nanowires (NWs) on poly-l-lactic acid (PLLA) microfibers with unique 3-dimensional structure and applied them as therapeutic cancer vaccines. This inorganic-organic hybrid nanocomposite has mild cellular toxicity but efficiently delivers a tumor antigen into dendritic cells, cellular bridges between innate and adaptive immunity, to stimulate them to express inflammatory cytokines and activation surface markers. We also demonstrated that the hybrid nanocomposites successfully induce tumor antigen-specific cellular immunity and significantly inhibit tumor growth in vivo. ZnO NWs on PLLA fibers systemically reduced immune suppressive TReg cells and enhanced the infiltration of T cells into tumor tissues, compared to mice immunized with PLLA fibers coated with the antigen. Our current findings open a new avenue in extending the biomedical application of inorganic metal oxide-inert organic hybrid nanocomposites as a novel vaccine platform.


Assuntos
Antígenos de Neoplasias , Portadores de Fármacos , Imunoterapia , Nanocompostos , Nanofios , Neoplasias Experimentais/terapia , Poliésteres , Óxido de Zinco , Animais , Antígenos de Neoplasias/química , Antígenos de Neoplasias/farmacologia , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/patologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Imunidade Celular/efeitos dos fármacos , Camundongos , Nanocompostos/química , Nanocompostos/uso terapêutico , Nanofios/química , Nanofios/uso terapêutico , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Poliésteres/química , Poliésteres/farmacologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA