Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Plant Biotechnol J ; 22(5): 1402-1416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38163285

RESUMO

Immunoglobulin G (IgG)-based fusion proteins have been widely exploited as a potential vaccine delivery platform but in the absence of exogenous adjuvants, the lack of robust immunity remains an obstacle. Here, we report on a key modification that overcomes that obstacle. Thus, we constructed an IgG-Fc vaccine platform for dengue, termed D-PCF, which in addition to a dengue antigen incorporates the cholera toxin non-toxic B subunit (CTB) as a molecular adjuvant, with all three proteins expressed as a single polypeptide. Following expression in Nicotiana benthamiana plants, the D-PCF assembled as polymeric structures of similar size to human IgM, a process driven by the pentamerization of CTB. A marked improvement of functional properties in vitro and immunogenicity in vivo over a previous iteration of the Fc-fusion protein without CTB [1] was demonstrated. These include enhanced antigen presenting cell binding, internalization and activation, complement activation, epithelial cell interactions and ganglioside binding, as well as more efficient polymerization within the expression host. Following immunization of mice with D-PCF by a combination of systemic and mucosal (intranasal) routes, we observed robust systemic and mucosal immune responses, as well as systemic T cell responses, significantly higher than those induced by a related Fc-fusion protein but without CTB. The induced antibodies could bind to the domain III of the dengue virus envelope protein from all four dengue serotypes. Finally, we also demonstrated feasibility of aerosolization of D-PCF as a prerequisite for vaccine delivery by the respiratory route.


Assuntos
Dengue , Vacinas , Animais , Camundongos , Humanos , Toxina da Cólera/química , Toxina da Cólera/metabolismo , Proteínas de Plantas , Adjuvantes Imunológicos , Peptídeos , Imunoglobulina G , Camundongos Endogâmicos BALB C
2.
Mar Drugs ; 21(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827121

RESUMO

Although the tumor bulk is initially reduced by 5-fluorouracil (5-FU), chemoresistance developed due to prolonged chemotherapy in colorectal cancer (CRC). The enrichment of cancer stem cells (CSCs) and the infiltration of tumor-associated macrophages (TAMs) contribute to chemoresistance and poor outcomes. A docosahexaenoic acid derivative developed by our group, 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA), exerts antitumor effects against TAMs infiltration and CSCs enrichment in our previous study. The current study aimed to investigate whether diHEP-DPA was able to overcome chemoresistance to 5-FU in CRCs, together with the potential synergistic mechanisms in a CT26-BALB/c mouse model. Our results suggested that although 5-FU inhibited tumor growth, 5-FU enriched CSCs via the WNT/ß-catenin signaling pathway, resulting in chemoresistance in CRCs. However, we revealed that 5-FU promoted the infiltration of TAMs via the NF-kB signaling pathway and improved epithelial-mesenchymal transition (EMT) via the signal transducer and activator of the transcription 3 (STAT3) signaling pathway; these traits were believed to contribute to CSC activation. Furthermore, supplementation with diHEP-DPA could overcome drug resistance by decreasing the CSCs, suppressing the infiltration of TAMs, and inhibiting EMT progression. Additionally, the combinatorial treatment of diHEP-DPA and 5-FU effectively enhanced phagocytosis by blocking the CD47/signal regulatory protein alpha (SIRPα) axis. These findings present that diHEP-DPA is a potential therapeutic supplement to improve drug outcomes and suppress chemoresistance associated with the current 5-FU-based therapies for colorectal cancer.


Assuntos
Neoplasias Colorretais , Fluoruracila , Camundongos , Animais , Humanos , Fluoruracila/farmacologia , Resistencia a Medicamentos Antineoplásicos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Xenoenxertos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Via de Sinalização Wnt , Células-Tronco Neoplásicas
3.
J Immunol ; 198(2): 629-633, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974458

RESUMO

Peyer's patches (PPs) are the major mucosal immune-inductive site, and germinal centers (GCs) in PPs determine the quality of the Abs produced. PP GCs are continuously induced by the gut microbiota, and their maintenance contributes to the induction of strong IgA responses to Ags. In this study, we investigated the role of formyl peptide receptor (FPR)-mediated signaling in the maintenance of PP GCs, because FPRs recognize the microbiota and initiate an innate immune response by chemotaxis. We found that follicular dendritic cells (FDCs), a key organizer of B cell follicles and GCs in mucosal immunity, express Fpr2. Additionally, Fpr2-mediated signaling in PP FDCs promoted Cxcl13 and B cell activating factor expression, as well as B cell proliferation and activation. Therefore, we suggest that Fpr2-mediated signaling in FDCs plays a key role in GC maintenance in PPs and results in an Ag-specific IgA response in the gut mucosal immune compartment.


Assuntos
Linfócitos B/imunologia , Células Dendríticas Foliculares/imunologia , Ativação Linfocitária/imunologia , Nódulos Linfáticos Agregados/imunologia , Receptores de Formil Peptídeo/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Citometria de Fluxo , Imunofluorescência , Centro Germinativo/imunologia , Imunidade nas Mucosas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/imunologia , Catelicidinas
4.
Pharm Biol ; 57(1): 369-379, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31156004

RESUMO

Context: Silk peptide from cocoons of silkworm (Bombyx mori L., Bombycidae) has been employed as a biomedical material and exhibits various bioactivities, including immune-modulating activity. Objective: We analyzed whether silk peptide exerts direct modulating effects on NK cells using an NK cell line in vitro and ex vivo splenocytes. We also attempted to delineate the mechanism underlying the modulation. Material and methods: In vitro activity of silk peptide on NK cells was determined by measurement of cytolytic activity against K562 cells at an effector-to-target ratio of 5:1 after incubation of NK-92MI cells with silk peptide (0-2000 µg/mL) for 48 and 72 h. Ex vivo activity of silk peptide on mouse splenic NK cells was determined similarly by using YAC-1 cells. Results: Treatment of NK-92MI NK cells with silk peptide (500-2000 µg/mL) significantly increased cytolytic activity on target cells by 2- to 4-fold. The same concentrations (500-2000 µg/mL) of silk peptide treatment also significantly enhanced the cytolytic activity of splenic NK cells against YAC-1 cells. Silk peptide treatment of IL-2-stimulated splenocytes induced enhanced expression of Th1, 2 and 17 cytokines including TNF-α, IFN-γ, IL-6, IL-4 and IL-17. Finally, ex vivo treatment with silk peptide on mouse splenocytes significantly enhanced the degree of NK cell maturation in a dose-dependent manner from 3.49 to 23.79%. Discussion and conclusions: These findings suggest that silk peptide stimulates NK cells, thereby influencing systemic immune functions and improving natural immunity. Thus, silk peptide could be useful as a complementary therapy in cancer patients.


Assuntos
Bombyx , Fatores Imunológicos/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Seda/química , Baço/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Citocinas/imunologia , Relação Dose-Resposta a Droga , Humanos , Fatores Imunológicos/isolamento & purificação , Células K562 , Células Matadoras Naturais/imunologia , Fragmentos de Peptídeos/isolamento & purificação , Seda/imunologia , Baço/citologia , Baço/imunologia
5.
Plant Biotechnol J ; 16(7): 1283-1294, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29223138

RESUMO

Dengue is a major global disease requiring improved treatment and prevention strategies. The recently licensed Sanofi Pasteur Dengvaxia vaccine does not protect children under the age of nine, and additional vaccine strategies are thus needed to halt this expanding global epidemic. Here, we employed a molecular engineering approach and plant expression to produce a humanized and highly immunogenic poly-immunoglobulin G scaffold (PIGS) fused to the consensus dengue envelope protein III domain (cEDIII). The immunogenicity of this IgG Fc receptor-targeted vaccine candidate was demonstrated in transgenic mice expressing human FcγRI/CD64, by induction of neutralizing antibodies and evidence of cell-mediated immunity. Furthermore, these molecules were able to prime immune cells from human adenoid/tonsillar tissue ex vivo as evidenced by antigen-specific CD4+ and CD8+ T-cell proliferation, IFN-γ and antibody production. The purified polymeric fraction of dengue PIGS (D-PIGS) induced stronger immune activation than the monomeric form, suggesting a more efficient interaction with the low-affinity Fcγ receptors on antigen-presenting cells. These results show that the plant-expressed D-PIGS have the potential for translation towards a safe and easily scalable single antigen-based tetravalent dengue vaccine.


Assuntos
Vacinas contra Dengue/imunologia , Engenharia Genética , Receptores de Imunoglobulina Polimérica/genética , Proteínas Recombinantes de Fusão/genética , Tonsila Faríngea/imunologia , Adjuvantes Imunológicos/genética , Animais , Anticorpos Neutralizantes/imunologia , Vacinas contra Dengue/genética , Feminino , Engenharia Genética/métodos , Humanos , Imunidade Celular , Imunoglobulina G/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Tonsila Palatina/imunologia , Plantas Geneticamente Modificadas , Receptores de IgG/imunologia , Receptores de Imunoglobulina Polimérica/imunologia , Proteínas Recombinantes de Fusão/imunologia , Nicotiana/genética
6.
Cell Immunol ; 325: 41-47, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29397905

RESUMO

Mucosal vaccination is an ideal strategy to induce protective immunity in both mucosal and parenteral areas. Successful induction of an antigen-specific immune response via mucosal administration essentially requires the effective delivery of antigen into a mucosal immune inductive site, which depends on antigen delivery into M cells. We previously reported that M cells specifically express C5aR, and antigen targeting to C5aR by using specific ligands, including Co1 peptide, promotes the antigen-specific immune response in both mucosal and systemic immune compartments. In this study, we found that application of the Co1 peptide to dengue virus antigen containing CD8 T cell epitopes effectively induced an antigen-specific IFN-γ-producing CD8+ T cell response after oral mucosal administration of antigen. Consequently, we suggest that Co1 peptide-mediated C5aR targeting of antigen into M cells can be used for the induction of an effective antigen-specific CD8+ T cell immune response in oral mucosal vaccine development.


Assuntos
Vacinas contra Dengue/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Proteínas não Estruturais Virais/imunologia , Animais , Antígenos , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus da Dengue/metabolismo , Modelos Animais de Doenças , Imunidade nas Mucosas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mucosa/imunologia , Vacinação , Proteínas não Estruturais Virais/metabolismo
7.
Virol J ; 15(1): 124, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089512

RESUMO

BACKGROUND: Antimicrobial peptides (AMPs) are primarily known for their innate immune defense against invading microorganisms, including viruses. In addition, recent research has suggested their modulatory activity in immune induction. Given that most subunit vaccines require an adjuvant to achieve effective immune induction through the activation of innate immunity, AMPs are plausible candidate molecules for stimulating not only innate immune but also adaptive immune responses. RESULTS: In this study, we investigated the ability of human ß-defensin (HBD) 2 to promote antiviral immunity in vitro and in vivo using a receptor-binding domain (RBD) of Middle East respiratory syndrome-coronavirus (MERS-CoV) spike protein (S RBD) as a model antigen (Ag). When HBD 2-conjugated S RBD was used to treat THP-1 human monocytic cells, the expression levels of antiviral (IFN-ß, IFN-γ, MxA, PKR, and RNaseL) and primary immune-inducing (NOD2, TNF-α, IL-1ß, and IL-6) molecules were enhanced compared to those expressed after treatment with S RBD only. The expression of chemokines capable of recruiting leukocytes, including monocytes/macrophages, natural killer cells, granulocytes, T cells, and dendritic cells, was also increased following HBD 2-conjugated S RBD treatment. More important, immunization of mice with HBD 2-conjugated S RBD enhanced the immunogenicity of the S RBD and elicited a higher S RBD-specific neutralizing antibody response than S RBD alone. CONCLUSIONS: We conclude that HBD 2 activates the primary antiviral innate immune response and may also mediate the induction of an effective adaptive immune response against a conjugated Ag.


Assuntos
Imunidade Inata/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais/imunologia , beta-Defensinas/imunologia , Imunidade Adaptativa/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/química , Antígenos Virais/imunologia , Antivirais/imunologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Feminino , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Glicoproteína da Espícula de Coronavírus/química , Células THP-1 , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Células Vero , Vacinas Virais/administração & dosagem , beta-Defensinas/química
8.
Microb Cell Fact ; 17(1): 146, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30217208

RESUMO

BACKGROUND: Dengue is a rapidly spreading mosquito borne tropical viral disease affecting hundreds of millions of people across the globe annually. The dengue virus (DENV) includes four genetically distinct serotypes that cause serious life-threatening infections, including dengue hemorrhagic fever/dengue shock syndrome. Dengue vaccine development is complicated by the possibility of vaccine-enhanced severe dengue disease due to antibody-dependent enhancement by pre-existing cross-reactivity, as well as homotypic antibodies. Thus, the development of an efficacious dengue vaccine conferring simultaneous and durable immunity to each of the four DENV serotypes has not yet been developed despite years of research. For mass immunization in deeply affected resource-limited countries, oral vaccination is considered more beneficial than conventional approaches. Therefore, in a continuing effort towards designing economical and potent vaccine candidates, the current study applied yeast surface display technology to develop an oral dengue vaccine candidate using whole recombinant yeast cells displaying the recombinant fusion protein of M cell targeting ligand Co1 fused to the synthetic consensus dengue envelope domain III (scEDIII). Female Balb/c mice were orally fed with recombinant yeast cells and immunogenicity in terms of systemic and mucosal immune responses was monitored. RESULTS: Immunofluorescence microscopy with dengue specific antibody and fluorescein isothiocyanate-conjugated anti-mouse IgG antibody clearly showed that recombinant protein Co1-scEDIII-AGA was localized on the cell surface of the respective clones in comparison with scEDIII-Co1 and Mock cells with no fluorescence. Oral dosage applications of surface displayed Co1-scEDIII-AGA stimulated a systemic humoral immune response in the form of dengue-specific serum IgG, as well as a mucosal immune response in the form of secretory immunoglobulin A (sIgA). Antigen-specific B cell responses in isolated lymphoid cells from the spleen and Peyer's patches further supported an elevated mucosal immune response. In addition, surface displayed Co1-scEDIII-AGA feeding elicited strong immune responses in comparison with scEDIII-Co1 and Mock following intraperitoneal booster with purified scEDIII antigen. CONCLUSIONS: Surface displayed preparations of Co1-scEDIII-AGA induced strong immunogenicity compared with non-displayed scEDIII-Co1. Prior studies have supported the neutralization potential of scEDIII constructs against all four serotypes. Thus, the oral administration of genetically engineered yeast whole cells displaying biologically active Co1-scEDIII fusion protein without any further processing shows prospective as a potent oral vaccine candidate against dengue viral infection.


Assuntos
Vacinas contra Dengue/administração & dosagem , Vírus da Dengue/imunologia , Saccharomyces cerevisiae/genética , Animais , Técnicas de Visualização da Superfície Celular , Ensaio de Imunoadsorção Enzimática , Feminino , Imunidade Humoral , Imunidade nas Mucosas , Camundongos Endogâmicos BALB C , Saccharomyces cerevisiae/metabolismo , Proteínas Virais/análise , Proteínas Virais/genética , Proteínas Virais/imunologia
9.
Microb Cell Fact ; 17(1): 24, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29452594

RESUMO

BACKGROUND: Dengue is listed as a neglected tropical disease by the Center for Disease Control and Preservation, as there are insufficient integrated surveillance strategies, no effective treatment, and limited licensed vaccines. Consisting of four genetically distinct serotypes, dengue virus (DENV) causes serious life-threatening infections due to its complexity. Antibody-dependent enhancement by pre-existing cross-reactive as well as homotypic antibodies further worsens the clinical symptoms of dengue. Thus, a vaccine conferring simultaneous and durable immunity to each of the four DENV serotypes is essential to restrict its escalation. In deeply affected resource-limited countries, oral vaccination using food-grade organisms is considered to be a beneficial approach in terms of costs, patient comfort, and simple logistics for mass immunization. The current study used a mouse model to explore the immunogenicity of an oral dengue vaccine candidate prepared using whole recombinant yeast cells (WC) and cell-free extracts (CFE) from cells expressing recombinant Escherichia coli heat-labile toxin protein B-subunit (LTB) fused to the consensus dengue envelope domain III (scEDIII). Mice were treated orally with recombinant WC and CFE vaccines in 2-week intervals for 4 weeks and changes in systemic and mucosal immune responses were monitored. RESULTS: Both WC and CFE dosage applications of LTB-scEDIII stimulated a systemic humoral immune response in the form of dengue-specific serum IgG as well as mucosal immune response in the form of secretory sIgA. Antigen-specific B cell responses in isolated lymphoid cells from the spleen and Peyer's patches further indicated an elevated mucosal immune response. Cellular immune response estimated through lymphocyte proliferation assay indicated higher levels in CFE than WC dosage. Furthermore, sera obtained after both oral administrations successfully neutralized DENV-1, whereas CFE formulation only neutralized DENV-2 serotype, two representative serotypes which cause severe dengue infection. Sera from mice that were fed CFE preparations demonstrated markedly higher neutralizing titers compared to those from WC-fed mice. However, WC feeding elicited strong immune responses, which were similar to the levels induced by CFE feeding after intraperitoneal booster with purified scEDIII antigen. CONCLUSIONS: CFE preparations of LTB-scEDIII produced strong immunogenicity with low processing requirements, signifying that this fusion protein shows promise as a potent oral vaccine candidate against dengue viral infection.


Assuntos
Vacinas contra Dengue/imunologia , Vírus da Dengue/patogenicidade , Dengue/prevenção & controle , Administração Oral , Animais , Dengue/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C
10.
Plant Biotechnol J ; 15(12): 1590-1601, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28421694

RESUMO

In order to enhance vaccine uptake by the immune cells in vivo, molecular engineering approach was employed to construct a polymeric immunoglobulin G scaffold (PIGS) that incorporates multiple copies of an antigen and targets the Fc gamma receptors on antigen-presenting cells. These self-adjuvanting immunogens were tested in the context of dengue infection, for which there is currently no globally licensed vaccine yet. Thus, the consensus domain III sequence (cEDIII) of dengue glycoprotein E was incorporated into PIGS and expressed in both tobacco plants and Chinese Ovary Hamster cells. Purified mouse and human cEDIII-PIGS were fractionated by HPLC into low and high molecular weight forms, corresponding to monomers, dimers and polymers. cEDIII-PIGS were shown to retain important Fc receptor functions associated with immunoglobulins, including binding to C1q component of the complement and the low affinity Fcγ receptor II, as well as to macrophage cells in vitro. These molecules were shown to be immunogenic in mice, with or without an adjuvant, inducing a high level IgG antibody response which showed a neutralizing potential against the dengue virus serotype 2. The cEDIII-PIGS also induced a significant cellular immune response, IFN-γ production and polyfunctional T cells in both the CD4+ and CD8+ compartments. This proof-of-principle study shows that the potent antibody Fc-mediated cellular functions can be harnessed to improve vaccine design, underscoring the potential of this technology to induce and modulate a broad-ranging immune response.


Assuntos
Vacinas contra Dengue/farmacologia , Cadeias Pesadas de Imunoglobulinas/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/imunologia , Animais , Células CHO , Cricetulus , Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/genética , Feminino , Regulação da Expressão Gênica de Plantas , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Testes de Neutralização , Plantas Geneticamente Modificadas/genética , Domínios Proteicos , Proteínas Recombinantes/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Nicotiana/genética
11.
Pharm Biol ; 55(1): 317-323, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27927080

RESUMO

CONTEXT: Red ginseng (heat-processed Panax ginseng) is a well-known alternative medicine with pharmacological antidiabetic activity. It exerts pharmacological effects through the transformation of saponin into metabolites by the intestinal microbiota. Given that intestinal conditions and intestinal microflora vary among individuals, the pharmacological effects of orally administered red ginseng likely may vary among individuals. OBJECTIVE: To overcome this variation and produce homogeneously effective red ginseng, we evaluated the antidiabetic effects of probiotic-fermented red ginseng in a mouse model. MATERIALS AND METHODS: The antidiabetic efficacy of orally administered probiotic-fermented red ginseng was assessed in ICR mice after induction of diabetes using streptozotocin (170 mg/kg body weight). Samples were given orally for 8 weeks, and indicators involved in diabetic disorders such as body weight change, water intake, blood glucose, glucose tolerance and various biochemical parameters were determined. RESULTS: Oral administration of probiotic-fermented red ginseng significantly decreased the level of blood glucose of about 62.5% in the fasting state and induced a significant increase in glucose tolerance of about 10.2% compared to the control diabetic mice. Additionally, various indicators of diabetes and biochemical data (e.g., blood glycosylated haemoglobin level, serum concentrations of insulin, and α-amylase activity) showed a significant improvement in the diabetic conditions of the mice treated with probiotic-fermented red ginseng in comparison with those of control diabetic mice. DISCUSSION AND CONCLUSION: Our results demonstrate the antidiabetic effects of probiotic-fermented red ginseng in the streptozotocin-induced mouse diabetes model and suggest that probiotic-fermented red ginseng may be a uniformly effective red ginseng product.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Fermentação , Hipoglicemiantes/farmacologia , Panax/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Probióticos , Estreptozocina , Administração Oral , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Hemoglobinas Glicadas/metabolismo , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/metabolismo , Insulina/sangue , Masculino , Camundongos Endogâmicos ICR , Fitoterapia , Extratos Vegetais/administração & dosagem , Plantas Medicinais , Pós , Fatores de Tempo , alfa-Amilases/metabolismo
12.
Plant Mol Biol ; 92(3): 347-56, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27566485

RESUMO

Dengue virus (DENV) infection is an emerging global health threat. DENV consists of four distinct serotypes, necessitating a tetravalent vaccine. In this study, expression of consensus envelope protein domain III (cEDIII) fused to cholera toxin B subunit (CTB) in transgenic rice calli was improved using the luminal binding protein BiP at the N-terminus and the SEKDEL signal sequences at the C-terminus, targeting the recombinant protein to endoplasmic reticulum (ER). We found that the fusion protein showed higher levels of expression when compared to the fusion proteins using rice amylase 3D (RAmy3D) or CTB native signal sequence only. The CTB-cEDIII fusion protein was evaluated as an oral dengue vaccine candidate in mice. Serotype specific systemic IgG antibodies and specific IgA response in feces were detected and furthermore, T cell proliferation and high frequency antibody-secreting B cells were detected in the spleen. These results suggest the possible use of plant-based dengue tetravalent vaccine targeted to the mucosal immune system for induction of systemic and mucosal immune responses to DENV infection.


Assuntos
Anticorpos Antivirais/sangue , Dengue/imunologia , Oryza/genética , Plantas Geneticamente Modificadas/imunologia , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Toxina da Cólera/genética , Dengue/genética , Imunização , Camundongos , Sorogrupo
13.
Eur J Immunol ; 45(5): 1402-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25655317

RESUMO

The human antimicrobial peptide LL-37 is known to have chemotactic and modulatory activities on various cells including monocytes, T cells, and epithelial cells. Given that LL-37 enhances chemotactic attraction and modulates the activity of DCs, it is conceivable that it might play a role as an immune adjuvant by skewing the immune environment toward immunostimulatory conditions. In this study, we characterized the mucosal adjuvant activity of LL-37 using model and pathogenic Ags. When LL-37-conjugated Ag was administered orally to mice, a tolerogenic Peyer's patch environment was altered to cell populations containing IL-6-secreting CD11c(+), CD11c(+) CD70(+), and Th17 cells capable of evoking a subsequent LL-37-conjugated Ag-specific immune response in both systemic and mucosal immune compartments. In addition, we showed presentation of formyl peptide receptor, an LL-37 receptor, on M cells, which may aid the initiation of an LL-37-mediated enhanced immune response through targeting and transcytosis of the conjugated Ag. Based on our findings, we conclude that LL-37 has potential as an oral mucosal adjuvant, not only by enhancing the delivery of LL-37-conjugated Ag to M cells, but also by triggering T-cell-mediated Ag-specific immune responses through modulation of the mucosal immune environment.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Catelicidinas/administração & dosagem , Catelicidinas/imunologia , Imunidade nas Mucosas , Células Th17/imunologia , Administração Oral , Animais , Anticorpos Neutralizantes/biossíntese , Peptídeos Catiônicos Antimicrobianos , Citocinas/biossíntese , Vacinas contra Dengue/imunologia , Feminino , Proteínas de Fluorescência Verde/administração & dosagem , Proteínas de Fluorescência Verde/imunologia , Humanos , Imunoglobulina A Secretora/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/imunologia
14.
Biochem Biophys Res Commun ; 473(4): 894-898, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27059141

RESUMO

Dengue virus (DENV) is a mosquito-borne pathogen that annually infects more than 390 million people in 100 different countries. Symptoms of the viral infection include a relatively weak dengue fever to severe dengue hemorrhagic fever/dengue shock syndrome, which are mortal infectious diseases. As of yet, there is no commercially available vaccine or therapeutic for DENV. Currently, passive immunotherapy using DENV-specific antibody (Ab) is a considered strategy to treat DENV infection. Here, we developed a monoclonal Ab (mAb), EDIIImAb-61, specific to the DENV domain III of the envelope glycoprotein (EDIII) with broad-spectrum detection ability to all four DENV serotypes (DENV-1∼4) to use as a therapeutic Ab. Although EDIII contains non-immunodominant epitopes compared to domains I and II, domain III plays a critical role in host receptor binding. EDIIImAb-61 exhibited cross-reactive binding affinity to all four DENV serotypes that had been isolated from infected humans. To further characterize EDIIImAb-61 and prepare genes for large-scale production using a heterologous expression system, the sequence of the complementarity determining regions was analyzed after cloning the full-length cDNA genes encoding the heavy and light chain of the mAb. Finally, we produced Ab from CHO-K1 cells transfected with the cloned EDIIImAb-61 heavy and light chain genes and confirmed the binding ability of the Ab. Collectively, we conclude that EDIIImAb-61 itself and the recombinant Ab produced using the cloned heavy and light chain gene of EDIIImAb-61 is a candidate for passive immunotherapy against DENV infection.


Assuntos
Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Vírus da Dengue/imunologia , Proteínas do Envelope Viral/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetulus , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Desenho de Fármacos , Ligação Proteica , Engenharia de Proteínas , Sorogrupo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
15.
Int Immunol ; 25(11): 623-32, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23900425

RESUMO

Oral mucosal vaccination is an alternative method to overcome the pitfalls of current injection-based vaccines, such as pain and high cost of vaccination. It is a feasible and economic vaccine application, especially in developing countries. However, achieving effective antigen delivery into mucosal lymphoid organs and efficient immune stimulation are prerequisites to successful oral mucosal vaccination. One promising approach for oral mucosal vaccine development is exploring the potential of M cells via M-cell-targeting ligands that have the potential to deliver ligand-conjugated antigens into mucosal lymphoid organs and evoke conjugated-antigen-specific systemic and mucosal immune responses. Here, we investigated the M-cell-targeting ligand, Co1, in inducing specific immune responses against a pathogenic viral antigen, envelope domain III (EDIII) of dengue virus, to provide the foundation for oral mucosal vaccine development against the pathogen. After oral administration of Co1-conjugated EDIII antigens, we observed efficient antigen delivery into Peyer's patches. We also report the elicitation of EDIII-specific immunity in systemic and mucosal compartments by Co1 ligand (located in the C-terminus of EDIII). Furthermore, the antibodies induced by the ligand-conjugated EDIII antigen showed effective virus-neutralizing activity. The results of this study suggest that the M-cell-targeting strategy using Co1 ligand as a mucosal adjuvant may be applicable for developing oral vaccine candidates against pathogenic viral antigen.


Assuntos
Antígenos Virais/imunologia , Imunidade nas Mucosas/imunologia , Mastócitos/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Administração Oral , Animais , Reações Antígeno-Anticorpo , Vírus da Dengue/imunologia , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Vacinação
16.
Arch Virol ; 159(12): 3219-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25091740

RESUMO

Classical swine fever (CSF), caused by the CSF virus (CSFV), is a highly contagious disease in pigs. In Korea, vaccination using a live-attenuated strain (LOM strain) has been used to control the disease. However, parenteral vaccination using a live-attenuated strain still faces a number of problems related to storage, cost, injection stress, and differentiation of CSFV infected and vaccinated pigs. Therefore, two kinds of new candidates for oral vaccination have been developed based on the translation of the E2 gene of the SW03 strain, which was isolated from an outbreak of CSF in 2002 in Korea, in transgenic rice calli (TRCs) from Oriza sativa L. cv. Dongjin to express a recombinant E2 protein (rE2-TRCs). The expression of the recombinant E2 protein (rE2) in rE2-TRCs was confirmed using Northern blot, SDS-PAGE, and Western blot analysis. Immune responses to the rE2-TRC in mice and pigs were investigated after oral administration. The administration of rE2-TRCs increased E2-specific antibodies titers and antibody-secreting cells when compared to animals receiving the vector alone (p < 0.05 and p < 0.01). In addition, mice receiving rE2-TRCs had a higher level of CD8+ lymphocytes and Th1 cytokine immune responses to purified rE2 (prE2) in vitro than the controls (p < 0.05 and p < 0.01). Pigs receiving rE2-TRCs also showed an increase in IL-8, CCL2, and the CD8+ subpopulation in response to stimulation with prE2. These results suggest that oral administration of rE2-TRCs can induce E2-specific immune responses.


Assuntos
Vírus da Febre Suína Clássica/imunologia , Oryza/genética , Plantas Geneticamente Modificadas , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Administração Oral , Animais , Anticorpos Antivirais/sangue , Células Produtoras de Anticorpos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CCL2/metabolismo , Vírus da Febre Suína Clássica/genética , Interleucina-8/metabolismo , Coreia (Geográfico) , Camundongos , Suínos , Subpopulações de Linfócitos T/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/isolamento & purificação , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/isolamento & purificação
17.
Vaccines (Basel) ; 12(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675823

RESUMO

Most of the licensed vaccines against SARS-CoV-2 target spike proteins to induce viral neutralizing antibodies. However, currently prevalent SARS-CoV-2 variants contain many mutations, especially in their spike proteins. The development of vaccine antigens with conserved sequences that cross-react with variants of SARS-CoV-2 is needed to effectively defend against SARS-CoV-2 infection. Given that viral infection is initiated in the respiratory mucosa, strengthening the mucosal immune response would provide effective protection. We constructed a mucosal vaccine antigen using the papain-like protease (PLpro) domain of non-structural protein 3 of SARS-CoV-2. To potentiate the mucosal immune response, PLpro was combined with human beta-defensin 2, an antimicrobial peptide with mucosal immune adjuvant activity, and Co1, an M-cell-targeting ligand. Intranasal administration of the recombinant PLpro antigen conjugate into C57BL/6 and hACE2 knock-in (KI) mice induced antigen-specific T-cell and antibody responses with complement-dependent cytotoxic activity. Viral challenge experiments using the Wuhan and Delta strains of SARS-CoV-2 provided further evidence that immunized hACE2 KI mice were protected against viral challenge infections. Our study shows that PLpro is a useful candidate vaccine antigen against SARS-CoV-2 infection and that the inclusion of human beta-defensin 2 and Co1 in the recombinant construct may enhance the efficacy of the vaccine.

18.
Biomed Pharmacother ; 171: 116153, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232664

RESUMO

Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease characterized by persistent inflammation and joint destruction. A lipid mediator (LM, namely, 17S-monohydroxy docosahexaenoic acid, resolvin D5, and protectin DX in a ratio of 3:47:50) produced by soybean lipoxygenase from DHA, exhibits anti-inflammatory activity. In this study, we determined the effect of LM on collagen antibody-induced arthritis (CAIA) in mice and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation in RAW264.7 cells. LM effectively downregulated the expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin K, inhibited osteoclast formation, and suppressed the NF-κB signaling pathway in vitro. In vivo, LM at 10 µg/kg/day significantly decreased paw swelling and inhibited progression of arthritis in CAIA mice. Moreover, proinflammatory cytokine (tumor necrosis factor-α, interleukin (IL)-6, IL-1ß, IL-17, and interferon-γ) levels in serum were decreased, whereas IL-10 levels were increased following LM treatment. Furthermore, LM alleviated joint inflammation, cartilage erosion, and bone destruction in the ankles, which may be related to matrix metalloproteinase and Janus kinase (JAK)-signal transducer and activators of transcription (STAT) signaling pathway. Our findings suggest that LM attenuates arthritis severity, restores serum imbalances, and modifies joint damage. Thus, LM represents a promising therapy for relieving RA symptoms.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Osteoclastos , Ligante RANK/metabolismo , Glycine max , Ácidos Docosa-Hexaenoicos/farmacologia , Artrite Reumatoide/metabolismo , Artrite Experimental/patologia , Inflamação/metabolismo , Lipoxigenases/metabolismo , Lipoxigenases/farmacologia
19.
Protein Expr Purif ; 88(2): 235-42, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23376461

RESUMO

A synthetic consensus gene was designed based on residues of the amino acid sequences of dengue envelope domain III (scEDIII) from all four serotypes, and codon optimization for expression was conducted using baker's yeast, Saccharomyces cerevisiae. The synthetic gene was cloned into a yeast episomal expression vector, pYEGPD-TER, which was designed to direct cloned gene expression using the glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter, a functional signal peptide of the amylase 1A protein from rice, and the GAL7 terminator. PCR and back-transformation into Escherichia coli confirmed the presence of the scEDIII gene-containing plasmid in the transformants. Northern blot analysis showed the presence of the scEDIII-specific transcript. Western blot analysis indicated that expressed scEDIII, with mobility similar to purified EDIII from E. coli, was successfully secreted into the culture media. Quantitative ELISA revealed that the recombinant scEDIII comprised approximately 0.1-0.6% of cell-free extract. In addition, 0.1-0.6 mg of scEDIII protein per liter of culture filtrate was detected on day 1 and peaked on day 3 after cultivation. The secreted scEDIII protein can be purified to ≥90% purity with 85% recovery using a simple ion-exchange FPLC followed by molecular weight cut-off. Upon administration of the purified protein to mice, mouse sera contained antibodies that were specific to all four serotypes of dengue virus. Moreover, a balanced immune response against all four serotypes was observed, suggesting that it may be possible to develop an effective tetravalent dengue vaccine using S. cerevisiae.


Assuntos
Vacinas contra Dengue/genética , Vírus da Dengue/genética , Epitopos/genética , Saccharomyces cerevisiae/genética , Vacinas Sintéticas/genética , Proteínas do Envelope Viral/genética , Animais , Formação de Anticorpos , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/isolamento & purificação , Sequência de Bases , Sequência Consenso , Vacinas contra Dengue/química , Vacinas contra Dengue/imunologia , Vacinas contra Dengue/isolamento & purificação , Vírus da Dengue/química , Vírus da Dengue/imunologia , Epitopos/química , Epitopos/imunologia , Epitopos/isolamento & purificação , Feminino , Vetores Genéticos/genética , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Terciária de Proteína , Transformação Genética , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/isolamento & purificação
20.
J Microbiol Biotechnol ; 33(3): 288-298, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36775853

RESUMO

Host defense peptides are expressed in various immune cells, including phagocytic cells and epithelial cells. These peptides selectively alter innate immune pathways in response to infections by pathogens, such as bacteria, fungi, and viruses, and modify the subsequent adaptive immune environment. Consequently, they play a wide range of roles in both innate and adaptive immune responses. These peptides are of increasing importance due to their broad-spectrum antimicrobial activity and their functions as mediators linking innate and adaptive immune responses. This review focuses on the pleiotropic biological functions and related mechanisms of action of human host defense peptides and discusses their potential clinical applications.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Imunidade Inata , Adjuvantes Imunológicos/farmacologia , Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA