Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
mSystems ; 9(6): e0131223, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38712927

RESUMO

Gut dysbiosis has been associated with impaired outcomes in liver and kidney transplant recipients, but the gut microbiome of lung transplant recipients has not been extensively explored. We assessed the gut microbiome in 64 fecal samples from end-stage lung disease patients before transplantation and 219 samples from lung transplant recipients after transplantation using metagenomic sequencing. To identify dysbiotic microbial signatures, we analyzed 243 fecal samples from age-, sex-, and BMI-matched healthy controls. By unsupervised clustering, we identified five groups of lung transplant recipients using different combinations of immunosuppressants and antibiotics and analyzed them in relation to the gut microbiome. Finally, we investigated the gut microbiome of lung transplant recipients in different chronic lung allograft dysfunction (CLAD) stages and longitudinal gut microbiome changes after transplantation. We found 108 species (58.1%) in end-stage lung disease patients and 139 species (74.7%) in lung transplant recipients that were differentially abundant compared with healthy controls, with several species exhibiting sharp longitudinal increases from before to after transplantation. Different combinations of immunosuppressants and antibiotics were associated with specific gut microbial signatures. We found that the gut microbiome of lung transplant recipients in CLAD stage 0 was more similar to healthy controls compared to those in CLAD stage 1. Finally, the gut microbial diversity of lung transplant recipients remained lower than the average gut microbial diversity of healthy controls up to more than 20 years post-transplantation. Gut dysbiosis, already present before lung transplantation was exacerbated following lung transplantation.IMPORTANCEThis study provides extensive insights into the gut microbiome of end-stage lung disease patients and lung transplant recipients, which warrants further investigation before the gut microbiome can be used for microbiome-targeted interventions that could improve the outcome of lung transplantation.


Assuntos
Disbiose , Microbioma Gastrointestinal , Transplante de Pulmão , Humanos , Transplante de Pulmão/efeitos adversos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Disbiose/microbiologia , Pneumopatias/microbiologia , Pneumopatias/cirurgia , Imunossupressores/uso terapêutico , Imunossupressores/efeitos adversos , Fezes/microbiologia , Idoso
2.
Nat Commun ; 15(1): 1470, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368394

RESUMO

Disrupted host-microbe interactions at the mucosal level are key to the pathophysiology of IBD. This study aimed to comprehensively examine crosstalk between mucosal gene expression and microbiota in patients with IBD. To study tissue-specific interactions, we perform transcriptomic (RNA-seq) and microbial (16S-rRNA-seq) profiling of 697 intestinal biopsies (645 derived from 335 patients with IBD and 52 from 16 non-IBD controls). Mucosal gene expression patterns in IBD are mainly determined by tissue location and inflammation, whereas the mucosal microbiota composition shows a high degree of individual specificity. Analysis of transcript-bacteria interactions identifies six distinct groups of inflammation-related pathways that are associated with intestinal microbiota (adjusted P < 0.05). An increased abundance of Bifidobacterium is associated with higher expression of genes involved in fatty acid metabolism, while Bacteroides correlates with increased metallothionein signaling. In patients with fibrostenosis, a transcriptional network dominated by immunoregulatory genes is associated with Lachnoclostridium bacteria in non-stenotic tissue (adjusted P < 0.05), while being absent in CD without fibrostenosis. In patients using TNF-α-antagonists, a transcriptional network dominated by fatty acid metabolism genes is linked to Ruminococcaceae (adjusted P < 0.05). Mucosal microbiota composition correlates with enrichment of intestinal epithelial cells, macrophages, and NK-cells. Overall, these data demonstrate the presence of context-specific mucosal host-microbe interactions in IBD, revealing significantly altered inflammation-associated gene-taxa modules, particularly in patients with fibrostenotic CD and patients using TNF-α-antagonists. This study provides compelling insights into host-microbe interactions that may guide microbiota-directed precision medicine and fuels the rationale for microbiota-targeted therapeutics as a strategy to alter disease course in IBD.


Assuntos
Interações entre Hospedeiro e Microrganismos , Doenças Inflamatórias Intestinais , Humanos , Interações entre Hospedeiro e Microrganismos/genética , Fator de Necrose Tumoral alfa/genética , Doenças Inflamatórias Intestinais/patologia , Fenótipo , Inflamação/genética , Inflamação/patologia , Ácidos Graxos , Mucosa Intestinal/patologia
3.
Gut Microbes ; 16(1): 2391505, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39167702

RESUMO

Emerging evidence suggests the gut microbiome's potential in predicting response to biologic treatments in patients with inflammatory bowel disease (IBD). In this prospective study, we aimed to predict treatment response to vedolizumab and ustekinumab, integrating clinical data, gut microbiome profiles based on metagenomic sequencing, and untargeted fecal metabolomics. We aimed to identify predictive biomarkers and attempted to replicate microbiome-based signals from previous studies. We found that the predictive utility of the gut microbiome and fecal metabolites for treatment response was marginal compared to clinical features alone. Testing our identified microbial ratios in an external cohort reinforced the lack of predictive power of the microbiome. Additionally, we could not confirm previously published predictive signals observed in similar sized cohorts. Overall, these findings highlight the importance of external validation and larger sample sizes, to better understand the microbiome's impact on therapy outcomes in the setting of biologicals in IBD before potential clinical implementation.


Assuntos
Anticorpos Monoclonais Humanizados , Fezes , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Metaboloma , Ustekinumab , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Metaboloma/efeitos dos fármacos , Ustekinumab/uso terapêutico , Estudos Prospectivos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Fezes/microbiologia , Feminino , Masculino , Adulto , Terapia Biológica/métodos , Resultado do Tratamento , Pessoa de Meia-Idade , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Biomarcadores/análise , Biomarcadores/metabolismo
4.
Biomedicines ; 11(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38137328

RESUMO

Oxidative stress is a key pathophysiological process associated with the development and progression of inflammatory bowel disease (IBD). Biomarkers for oxidative stress, however, are scarce, as are diagnostic tools that can interrogate an individual's gut redox status. This proof-of-concept study aimed to evaluate the potential utility of an oxidation-reduction potential (ORP) measurement probe, to quantify redox status in the feces of both patients with IBD and healthy controls. Previous studies using this ORP measurement probe demonstrated promising data when comparing ORP from severely malnourished individuals with that of healthy controls. To date, ORP analyses have not been performed in the context of IBD. We hypothesized that measuring the ORP of fecal water in patients with IBD might have diagnostic value. The current study, however, did not show significant differences in ORP measurement values between patients with IBD (median [IQR] 46.5 [33.0-61.2] mV) and healthy controls (25 [8.0-52.0] mV; p = 0.221). Additionally, ORP measurements were highly unstable and rapidly fluctuated throughout time, with ORP values varying from +24 to +303 mV. Due to potential biological processes and limitations of the measuring equipment, this study was unable to reliably measure ORP. As a result, our findings indicate that ORP quantification may not be a suitable method for assessing fecal redox status and, therefore, does not currently support further exploration as a diagnostic or monitoring tool.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA