RESUMO
Forest reproductive material (FRM) is constantly traded between European countries, but bilateral trade statistics on a European scale are limited. For the first time we analysed national datasets according Council Directiv 1999/105/EC for the tree species Picea abies, Pinus sylvestris, P. pinaster, Fagus sylvatica, Fraxinus excelsior, Quercus robur, Q. rubra, and Q. petraea. Based on the period 2004-2014 we (i) quantified the amount and identified European FRM trade and production routes, (ii) applied a gravity model of economic trade to examine the determinants of trade, (iii) discussed the putative genetic impact of transferred FRM on native tree populations, and (iv) considered legislation and documentation processes to their compliance, purpose, and benefit in producing data relevant to sustainable forest management. On average, 30 million plants and 400,000â¯kg seeds were annually traded. About 85% of traded seedlings were Norway spruce. Coniferous FRM trade is dominated by Scandinavian and Baltic countries, while broad-leaved species are extensively traded in Central Europe. FRM trade and production are interconnected on a multinational level, and besides domestic FRM, most countries are also trading with foreign material. The results of the gravity model indicate that among other significant factors the bilateral trade is driven by geographical distance, currency, and forestry contribution to the domestic gross product. As no detailed data on seed transfer were made available by most countries, the total FRM transfer is biased and probably underestimated.
Assuntos
Fagus , Picea , Europa (Continente) , Florestas , Noruega , ÁrvoresRESUMO
The quality of chicken eggs is an important criterion for food safety and the consumers' choice at the point of sale. Several studies have shown that egg quality can be influenced by the chickens' genotype and by the composition of the diet. The present study aimed to evaluate the effect of faba beans as a substitute for soybeans in the diet of chickens originating from traditional low-performance breeds in comparison with high-performing laying type hens and their crosses on egg quality parameters. Chickens of six different genotypes were fed either with a feed mix containing 20% faba beans with high or low vicin contents or, as a control, a feed mix containing soybeans. The genotypes studied were the local breeds Vorwerkhuhn and Bresse Gauloise, as well as commercial White Rock parent hens and their crosses. Yolk weight, Haugh units, yolk and shell color, the frequency of blood and meat spots and the composition of the eggs were significantly influenced by the genotype. The feeding of faba beans had an effect on yolk and shell color, Haugh units and shell portion, while there was no significant influence on the frequency of blood and meat spots.
RESUMO
Keel bone damage is an important animal welfare problem in laying hens. Two generations of four layer lines, differing in phylogenetic background and performance level and kept in single cages or floor pens were weighed and scored for keel bone deformities (KBD) during the laying period. KBD, keel bone fractures (KBF) and the bone mineral density (BMD) of the keels were assessed post mortem. For BMD, relationships to laying performance and body growth were estimated. Caged hens showed more deformities, but fewer fractures and a lower BMD of the keel bone than floor-housed hens. White-egg layers had a lower BMD (0.140-0.165 g/cm2) and more KBD than brown-egg layers (0.179-0.184 g/cm2). KBF occurred more often in the high-performing lines than the moderate-performing ones. However, in the high-performing lines, BMD was positively related to total egg number from 18 to 29 weeks of age. The adult body weight derived from fitted growth curves (Gompertz function) had a significant effect (p < 0.001) on keels' BMD. The study contributes to the understanding of predisposing factors for keel bone damage in laying hens. It showed that the growth rate has a rather subordinate effect on keels' BMD, while the BMD itself greatly affects KBD.
RESUMO
Skeletal disorders, including fractures and osteoporosis, in laying hens cause major welfare and economic problems. Although genetics have been shown to play a key role in bone integrity, little is yet known about the underlying genetic architecture of the traits. This study aimed to identify genes associated with bone breaking strength and bone mineral density of the tibiotarsus and the humerus in laying hens. Potentially informative single nucleotide polymorphisms (SNP) were identified using Random Forests classification. We then searched for genes known to be related to bone stability in close proximity to the SNPs and identified 16 potential candidates. Some of them had human orthologues. Based on our findings, we can support the assumption that multiple genes determine bone strength, with each of them having a rather small effect, as illustrated by our SNP effect estimates. Furthermore, the enrichment analysis showed that some of these candidates are involved in metabolic pathways critical for bone integrity. In conclusion, the identified candidates represent genes that may play a role in the bone integrity of chickens. Although further studies are needed to determine causality, the genes reported here are promising in terms of alleviating bone disorders in laying hens.
Assuntos
Densidade Óssea/genética , Galinhas/fisiologia , Polimorfismo de Nucleotídeo Único , Animais , Proteínas Aviárias/genética , Árvores de Decisões , Feminino , Estudo de Associação Genômica Ampla/métodosRESUMO
The current practices of the poultry industry have raised concerns among consumers. Among these is the culling of day-old male chicks of laying hybrids; a suitable alternative for this could be the use of dual-purpose breeds where both sexes are used. Another practice that causes concern is the import of large quantities of soybeans for feedstuff production. Substitutes for these soybean-based products are regional protein crops, such as faba beans (Vicia faba L.; FBs). The objective of this study was to test the suitability of FB as a locally produced soybean meal replacement for two local dual-purpose chicken breeds and one high-performing layer line. The breast and leg meat of male Bresse Gauloise (BG), Vorwerkhuhn (VH), and White Rock (WR) animals was evaluated for different meat quality parameters: pH, color, water holding capacity, and tenderness. Sensory properties of the samples were evaluated by a trained panel with a conventional descriptive analysis. Results show different effects of FB diets on meat quality parameters in the different breeds. The attributes mostly affected by the diet are related to aroma, flavor, and texture, particularly in VH and WR. Overall, faba beans appear to be an acceptable dietary protein source for rearing these breeds for meat production.
RESUMO
The authors wish to make the following corrections to this paper [...].
RESUMO
Poultry production is raising concerns within the public regarding the practice of culling day-old chicks and the importation of soy from overseas for feedstuff. Therefore, an alternative approach to poultry production was tested. In two consecutive experiments, two traditional chicken breeds, Vorwerkhuhn and Bresse Gauloise, and White Rock as a commercial layer genotype as well as crossbreds thereof were fed diets containing either 20% vicin-rich or vicin-poor faba beans, though addressing both subjects of debate. Hen performance traits and bone stability were recorded. All parameters were considerably influenced by the genotype with White Rock showing the significantly highest (p < 0.05) laying performance (99.4% peak production) and mean egg weights (56.6 g) of the purebreds, but the lowest bone breaking strength (tibiotarsus 197.2 N, humerus 230.2 N). Regarding crossbreds, the Bresse Gauloise × White Rock cross performed best (peak production 98.1%, mean egg weight 58.0 g). However, only limited dietary effects were found as only the feeding of 20% vicin-rich faba beans led to a significant reduction of egg weights of at most 1.1 g (p < 0.05) and to a significant reduction of the shell stability in the crossbred genotypes. In terms of dual-purpose usage, crossing of Bresse Gauloise with White Rock seems to be the most promising variant studied here.
RESUMO
Impaired animal welfare due to skeletal disorders is likely one of the greatest issues currently facing the egg production industry. Reduced bone stability in laying hens is frequently attributed to long-term selection for increased egg production. The present study sought to analyse the relationship between bone stability traits and egg production. The study comprised four purebred layer lines, differing in their phylogenetic origin and performance level, providing extended insight into the phenotypic variability in bone characteristics in laying hens. Data collection included basic production parameters, bone morphometry, bone mineral density (BMD) and bone breaking strength (BBS) of the tibiotarsus and humerus. Using a multifactorial model and regression analyses, BMD proved to be of outstanding importance for bone stability. Only for the tibiotarsus were morphometric parameters and the bone weight associated with BBS. Within the chicken lines, no effect of total eggshell production on BBS or BMD could be detected, suggesting that a high egg yield itself is not necessarily a risk for poor bone health. Considering the complexity of osteoporosis, the estimated genetic parameters confirmed the importance of genetics in addressing the challenge of improving bone strength in layers.
RESUMO
The faba bean (Vicia faba L.) is a native protein crop and considered a promising alternative to soybeans. Due to its anti-nutritive substances such as vicin and convicin (VC) its use in animal nutrition has been restricted. In the present study, two consecutive experiments were conducted to analyse the effects of feeding 20% faba beans, which differ in their VC content on fattening performance and slaughter traits of different chicken genotypes. In a first trial, purebred male chickens of the local breeds Bresse Gauloise and Vorwerkhuhn as well as of a high-performance White Rock line were tested. In a second trial, crossbreds of them were evaluated: Vorwerkhuhn x Bresse Gauloise, Vorwerkhuhn x White Rock, Bresse Gauloise x White Rock. Daily weight gain and feed intake were recorded until slaughter at approximately 2100 g. At slaughter the final live weight, carcass yield and the weights of the valuable parts (breasts and legs) were measured. For the genotypes studied, no adverse or undesirable effects of both VC-rich and VC-poor faba beans in the feedstuff were detected regarding body weight development, carcass quality, and fattening parameters. Furthermore, there was no indication that the birds' health was impaired.
RESUMO
In modern laying hybrids, calcium (Ca) homeostasis is immensely challenged by daily eggshell calcification. However, excessive mobilization of Ca from bones may lead to osteoporosis, which then manifests in a high incidence of poor bone quality. The aim of this study was to characterize the hens' adaptation response to an alternating dietary Ca restriction. The animal model consisted of four purebred layer lines, differing in laying performance (high vs. moderately performing lines) and phylogenetic origin (white- vs. brown-egg lines). According to the resource allocation theory, hens selected for high egg production were assumed to show a different response pattern to cope with this nutritive challenge compared to moderately performing lines. Data collected included egg number, egg quality traits, body weight and bone characteristics. The Ca depletion led to a temporary drop in egg production and shell quality and a loss of bone stability due to Ca mobilization. The white-egg lines response was more pronounced, whereas the brown-egg lines were less sensitive towards reduced Ca supply. Our study shows that the hens' responsiveness to coping with a nutritive Ca depletion is not ultimately linked to genetic selection for increased egg production but rather to phylogenetic origin.