Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 24(3): 1096-113, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22388452

RESUMO

Flagellin sensing2 (FLS2) is a transmembrane receptor kinase that activates antimicrobial defense responses upon binding of bacterial flagellin or the flagellin-derived peptide flg22. We find that some Arabidopsis thaliana FLS2 is present in FLS2-FLS2 complexes before and after plant exposure to flg22. flg22 binding capability is not required for FLS2-FLS2 association. Cys pairs flank the extracellular leucine rich repeat (LRR) domain in FLS2 and many other LRR receptors, and we find that the Cys pair N-terminal to the FLS2 LRR is required for normal processing, stability, and function, possibly due to undescribed endoplasmic reticulum quality control mechanisms. By contrast, disruption of the membrane-proximal Cys pair does not block FLS2 function, instead increasing responsiveness to flg22, as indicated by a stronger oxidative burst. There was no evidence for intermolecular FLS2-FLS2 disulfide bridges. Truncated FLS2 containing only the intracellular domain associates with full-length FLS2 and exerts a dominant-negative effect on wild-type FLS2 function that is dependent on expression level but independent of the protein kinase capacity of the truncated protein. FLS2 is insensitive to disruption of multiple N-glycosylation sites, in contrast with the related receptor EF-Tu receptor that can be rendered nonfunctional by disruption of single glycosylation sites. These and additional findings more precisely define the molecular mechanisms of FLS2 receptor function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/metabolismo , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Glicosilação , Ligantes , Mutagênese Sítio-Dirigida , Proteínas Quinases/genética
2.
Biochemistry ; 52(18): 3062-73, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23586781

RESUMO

Nitric oxide synthase (NOS) catalyzes the conversion of L-arginine to L-citrulline through the intermediate N(ω)-hydroxy-L-arginine (NHA), producing nitric oxide, an important mammalian signaling molecule. Several disease states are associated with improper regulation of nitric oxide production, making NOS a therapeutic target. The first step of the NOS reaction has been well-characterized and is presumed to proceed through a compound I heme species, analogous to the cytochrome P450 mechanism. The second step, however, is enzymatically unprecedented and is thought to occur via a ferric peroxo heme species. To gain insight into the details of this unique second step, we report here the synthesis of NHA analogues bearing guanidinium methyl or ethyl substitutions and their investigation as either inhibitors of or alternate substrates for NOS. Radiolabeling studies reveal that N(ω)-methoxy-L-arginine, an alternative NOS substrate, produces citrulline, nitric oxide, and methanol. On the basis of these results, we propose a mechanism for the second step of NOS catalysis in which a methylated nitric oxide species is released and is further metabolized by NOS. Crystal structures of our NHA analogues bound to nNOS have been determined, revealing the presence of an active site water molecule only in the presence of singly methylated analogues. Bulkier analogues displace this active site water molecule; a different mechanism is proposed in the absence of the water molecule. Our results provide new insights into the steric and stereochemical tolerance of the NOS active site and substrate capabilities of NOS.


Assuntos
Arginina/análogos & derivados , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Arginina/metabolismo , Catálise , Cromatografia Líquida de Alta Pressão , Citrulina/biossíntese , Cristalografia por Raios X , Cinética , Espectrometria de Massas , Metilação , Modelos Moleculares , Sondas Moleculares , NADP/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo I/química , Ratos , Especificidade por Substrato
3.
J Med Chem ; 56(8): 3121-47, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23458846

RESUMO

The development of new therapeutics for the treatment of neurodegenerative pathophysiologies currently stands at a crossroads. This presents an opportunity to transition future drug discovery efforts to target disease modification, an area in which much still remains unknown. In this Perspective we examine recent progress in the areas of neurodegenerative drug discovery, focusing on some of the most common targets and mechanisms: N-methyl-d-aspartic acid (NMDA) receptors, voltage gated calcium channels (VGCCs), neuronal nitric oxide synthase (nNOS), oxidative stress from reactive oxygen species, and protein aggregation. These represent the key players identified in neurodegeneration and are part of a complex, intertwined signaling cascade. The synergistic delivery of two or more compounds directed against these targets, along with the design of small molecules with multiple modes of action, should be explored in pursuit of more effective clinical treatments for neurodegenerative diseases.


Assuntos
Desenho de Fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Esclerose Lateral Amiotrófica/fisiopatologia , Antioxidantes/uso terapêutico , Canais de Cálcio/efeitos dos fármacos , Combinação de Medicamentos , Humanos , Doença de Huntington/fisiopatologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/fisiopatologia , Dobramento de Proteína/efeitos dos fármacos , Estrutura Quaternária de Proteína/efeitos dos fármacos , Deficiências na Proteostase/fisiopatologia , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA