Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Chem ; 65(9): 6775-6802, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35482677

RESUMO

d-Serine is a coagonist of the N-methyl d-aspartate (NMDA) receptor, a key excitatory neurotransmitter receptor. In the brain, d-serine is synthesized from its l-isomer by serine racemase and is metabolized by the D-amino acid oxidase (DAO, DAAO). Many studies have linked decreased d-serine concentration and/or increased DAO expression and enzyme activity to NMDA dysfunction and schizophrenia. Thus, it is feasible to employ DAO inhibitors for the treatment of schizophrenia and other indications. Powered by the Schrödinger computational modeling platform, we initiated a research program to identify novel DAO inhibitors with the best-in-class properties. The program execution leveraged an hDAO FEP+ model to prospectively predict compound potency. A new class of DAO inhibitors with desirable properties has been discovered from this endeavor. Our modeling technology on this program has not only enhanced the efficiency of structure-activity relationship development but also helped to identify a previously unexplored subpocket for further optimization.


Assuntos
N-Metilaspartato , Esquizofrenia , D-Aminoácido Oxidase/metabolismo , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Relação Estrutura-Atividade
2.
Neuroscience ; 409: 169-179, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31029729

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the loss of neurons in the substantia nigra that project to the striatum and release dopamine (DA), which is required for normal movement. Common non-motor symptoms likely involve abnormalities with other neurotransmitters, such as serotonin, norepinephrine, acetylcholine, glycine, glutamate and gamma-aminobutyric acid (GABA). As part of a broad effort to provide better PD research tools, the Michael J. Fox Foundation for Parkinson's Research funded the generation and characterization of knockout (KO) rats for genes with PD-linked mutations, including PINK1, Parkin, DJ-1 and LRRK2. Here we extend the phenotypic characterization of these lines of KO rats to include in vivo microdialysis to measure both basal and potassium-induced release of the above neurotransmitters and their metabolites in the striatum of awake and freely moving rats at ages 4, 8 and 12 months compared to wild-type (WT) rats. We found age-dependent abnormalities in basal DA, glutamate and acetylcholine in PINK1 KO rats and age-dependent abnormalities in basal DA metabolites in Parkin and LRRK2 KO rats. Parkin KO rats had increased glycine release while DJ-1 KO rats had decreased glutamate release and increased acetylcholine release compared to WT rats. All lines except DJ-1 KO rats showed age-dependent changes in release of one or more neurotransmitters. Our data suggest these rats may be useful for studies of PD-related synaptic dysfunction and neurotransmitter dynamics as well as studies of the normal and pathogenic functions of these genes with PD-linked mutations.


Assuntos
Acetilcolina/metabolismo , Encéfalo/metabolismo , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Doença de Parkinson/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Técnicas de Inativação de Genes , Glicina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Masculino , Doença de Parkinson/genética , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ratos , Serotonina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA