Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(1): 238-247, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38117670

RESUMO

Hypoxia-inducible factor (HIF) stabilizers are listed in the World Anti-Doping Agency's prohibited list as they can increase aerobic exercise capacity. The rapid pace of emergence of highly structurally diverse HIF stabilizers could pose a risk to conventional structure-based methods in doping control to detect new investigational drugs. Therefore, we developed a strategy that is capable of detecting the presence of any HIF stabilizer, irrespective of its structure, by detecting biological activity. Previously developed cell-based HIF1/2 assays were optimized to a stable format and evaluated for their screening potential toward HIF stabilizers. Improved pharmacological characterization was established by the stable cell-based formats, and broad specificity was demonstrated by pharmacologically characterizing a diverse set of HIF stabilizers (including enarodustat, IOX2, IOX4, MK-8617, JNJ-42041935). The methodological (in solvent) limit of detection of the optimal HIF1 stable bioassay toward detecting the reference compound roxadustat was 100 nM, increasing to 50-100 ng/mL (corresponding to 617-1233 nM in-well) in matching urine samples, owing to strong matrix effects. In a practical context, a urinary limit of detection of 1.15 µg/mL (95% detection rate) was determined, confirming the matrix-dependent detectability of roxadustat in urine. Pending optimization of a universal sample preparation strategy and/or a methodology to correct for the matrix effects, this untargeted approach may serve as a complementing method in antidoping control, as theoretically, it would be capable of detecting any unknown substance with HIF stabilizing activity.


Assuntos
Dopagem Esportivo , Detecção do Abuso de Substâncias/métodos , Glicina/química , Pirazóis , Triazóis
2.
Arch Toxicol ; 98(8): 2619-2630, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38735004

RESUMO

Cultivation of industrial low-Δ9-tetrahydrocannabinol (Δ9-THC) hemp has created an oversupply of cannabidiol (CBD)-rich products. The fact that phytocannabinoids, including CBD, can be used as precursors to synthetically produce a range of THC variants-potentially located in a legal loophole-has led to a diversification of cannabis recreational drug markets. 'Hemp-compliant', 'hemp-derived' and 'semisynthetic' cannabinoid products are emerging and being advertised as (legal) alternatives for Δ9-THC. This study included a large panel (n = 30) of THC isomers, homologs, and analogs that might be derived via semisynthetic procedures. As a proxy for the abuse potential of these compounds, we assessed their potential to activate the CB1 cannabinoid receptor with a ß-arrestin2 recruitment bioassay (picomolar-micromolar concentrations). Multiple THC homologs (tetrahydrocannabihexol, THCH; tetrahydrocannabiphorol, THCP; tetrahydrocannabinol-C8, THC-C8) and THC analogs (hexahydrocannabinol, HHC; hexahydrocannabiphorol, HHCP) were identified that showed higher potential for CB1 activation than Δ9-THC, based on either higher efficacy (Emax) or higher potency (EC50). Structure-activity relationships were assessed for Δ9-THC and Δ8-THC homologs encompassing elongated alkyl chains. Additionally, stereoisomer-specific differences in CB1 activity were established for various THC isomers (Δ7-THC, Δ10-THC) and analogs (HHC, HHCP). Evaluation of the relative abundance of 9(S)-HHC and 9(R)-HHC epimers in seized drug material revealed varying epimeric compositions between batches. Increased abundance of the less active 9(S)-HHC epimer empirically resulted in decreased potency, but sustained efficacy for the resulting diastereomeric mixture. In conclusion, monitoring of semisynthetic cannabinoids is encouraged as the dosing and the relative composition of stereoisomers can impact the harm potential of these drugs, relative to Δ9-THC products.


Assuntos
Canabinoides , Cannabis , Dronabinol , beta-Arrestina 2 , Cannabis/química , Humanos , Dronabinol/análogos & derivados , Dronabinol/toxicidade , Dronabinol/química , Canabinoides/toxicidade , Canabinoides/química , beta-Arrestina 2/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Drogas Ilícitas/toxicidade , Drogas Ilícitas/química , Canabidiol/toxicidade , Canabidiol/química , Células HEK293
3.
Arch Toxicol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115690

RESUMO

Synthetic cannabinoid receptor agonists (SCRAs) are a class of synthetic drugs that mimic and greatly surpass the effect of recreational cannabis. Acute SCRA intoxications are in general difficult to assess due to the large number of compounds involved, differing widely in both chemical structure and pharmacological properties. The rapid pace of emergence of unknown SCRAs hampers on one hand the timely availability of methods for identification and quantification to confirm and estimate the extent of the SCRA intoxication. On the other hand, lack of knowledge about the harm potential of emerging SCRAs hampers adequate interpretation of serum concentrations in intoxication cases. In the present study, a novel comparative measure for SCRA intoxications was evaluated, focusing on the cannabinoid activity (versus serum concentrations), which can be measured in serum extracts with an untargeted bioassay assessing ex vivo CB1 activity. Application of this principle to a series of SCRA intoxication cases (n = 48) allowed for the determination of activity equivalents, practically entailing a conversion from different SCRA serum concentrations to a JWH-018 equivalent. This allowed for the interpretation of both mono- (n = 34) and poly-SCRA (n = 14) intoxications, based on the intrinsic potential of the present serum levels to exert cannabinoid activity (cf. pharmacological/toxicological properties). A non-distinctive toxidrome was confirmed, showing no relation to CB1 activity. The JWH-018 equivalent was partly related to the poison severity score (PSS) and causality of the clinical intoxication elicited by the SCRA. Altogether, this equivalent concept allows to comparatively and timely interpret (poly-)SCRA intoxications based on CB1 activity.

4.
Biochem Pharmacol ; 229: 116478, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128589

RESUMO

Hypoxia-inducible factors (HIF) are interesting targets for multiple therapeutic indications. While HIF activation is desired for the treatment of anemia-related and ischemic diseases, HIF inhibition is of tremendous interest to anti-cancer drug development. Different signaling events within the HIF pathway are being targeted by drug discovery programs, with a special interest in HIF-selective (possibly also HIF1/2 isoform-selective) compounds. In this study, we applied recently developed cell-based split-nanoluciferase HIF heterodimerization assays to study the effects of compounds, targeting HIF activity by various mechanisms of action. This study shows that the application of similar or diverse assay protocols allows to detect various influences on HIF heterodimerization as a key signaling event in the oxygen sensing pathway: increased HIF heterodimerization (roxadustat, MG-132), decreased HIF heterodimerization (PX-478, ibuprofen) and direct (HIF isoform-selective) heterodimerization inhibiting effects (PT-2385). Changes in treatment time and in the assay protocol allowed to assess direct and indirect effects on HIFα-HIFß heterodimerization. In addition to the evaluation of applications of these new bioassays regarding pharmacological characterizations, benefits and considerations are discussed related to the use of cellular, luminescent-based bioassays. Briefly, benefits include the bidirectional nature of the biological readout, the upstream mechanism of detection, the differentiation between HIF1 and HIF2 effects and the simulation of various conditions. Specific and general considerations include cell-based, technical and disease/drug-related aspects (e.g., non-specific effects, color interference). In summary, the versatility of these bioassays offers benefits in widespread applications regarding drug discovery and pharmacological characterization of various therapeutics, applying either the same or optimized experimental protocols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA